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Abstract. 

 

Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building 

materials, as their production may release up to 35% less CO2 into the atmosphere when compared 

to ordinary Portland cements. Here, we discuss the laboratory production of three aluminum-rich 

BSA clinkers with nominal mineralogical compositions in the range C2S (50-60%), C4A3$ (20-

30%), CA (10%) and C12A7 (10%). Using thermogravimetry, differential thermal analysis, high 

temperature microscopy, and X-ray powder diffraction with Rietveld quantitative phase analysis, 

we found that burning for 15 minutes at 1350ºC was the optimal procedure, in these experimental 

conditions, for obtaining the highest amount of C4A3$, i.e. a value as close as possible to the 

nominal composition. Under these experimental conditions, three different BSA clinkers, nominally 

with 20, 30 and 30 wt% of C4A3$, had 19.6, 27.1 and 27.7 wt%, C4A3$ respectively, as determined 

by Rietveld analysis. We also studied the complex hydration process of BSA cements prepared by 

mixing BSA clinkers and gypsum. We present a methodology to establish the phase assemblage 

evolution of BSA cement pastes with time, including amorphous phases and free water. The 

methodology is based on Rietveld quantitative phase analysis of synchrotron and laboratory X-ray 

powder diffraction data coupled with chemical constraints. A parallel calorimetric study is also 

reported. It is shown that the -C2S phase is more reactive in aluminum-rich BSA cements than in 

standard belite cements. On the other hand, C4A3$ reacts faster than the belite phases. The gypsum 

ratio in the cement is also shown to be an important factor in the phase evolution. 
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1. Introduction. 

 

The manufacture of Portland cement produces large amounts of CO2 due principally to the high 

calcite (CaCO3) content of the raw mix. Moreover, it needs vast amounts of energy to grind the raw 

mixtures and the final products. The combined decarbonation, thermal and electrical-power CO2 

emissions may total as much as 0.97 tons of CO2 per average ton of Portland Cement (OPC) 

produced. Thus, the cement industry contributes around 6% of all CO2 anthropogenic emissions 

[1,2]. Belite-rich cements were proposed as environmentally friendly materials [3,4]. However, the 

activation of these cements is essential, if they are expected to be used worldwide, due to their slow 

reaction with water and, consequently, the low mechanical strengths developed at early ages [5]. 

These disadvantages can be overcome in two complementary ways: i) producing BSA cements, 

with C4A3$ [also named as Klein´s salt] [6,7] and ii) stabilizing high temperature belite polymorphs 

( -forms) [8-11]. Recently, a class of iron-rich BSA cements has been proposed by Lafarge [12], in 

which activation is promoted by both strategies already mentioned.
*
  

BSA cements can be classified as belite-rich materials, containing more than 50 wt% of C2S, while 

OPC are alite-rich cements with more than 60 wt% of C3S [13]. This means that BSA cement 

production demands less calcium and moreover, part of the calcium carbonate is replaced by 

calcium sulfate in order to obtain C4A3$. BSA cement manufacture in a modern cement plant can 

give CO2 emission reductions of up to ~35% per mass of cement produced, relative to OPC, as a 

result of i) less limestone in the raw feed; ii) a lower burning-zone temperature, (~1250°C, as 

opposed to ~1450°C for OPC and iii) ease of cement grinding due to higher clinker porosity 

[14,15]. 

                                                 
*
 Cement nomenclature is used: C=CaO, S=SiO2, A=Al2O3, F=Fe2O3, $=SO3 and H=H2O. 
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The most common formulation of BSA cements is C2S, C4A3$ and C4AF [6,12,14,16,17]. These are 

iron-rich BSA cements produced at ~1250ºC and they are characterized by rapid hardening, 

excellent durability, self-stressing and volume stability, depending on the amount of gypsum added 

[18]. Alternatively, in order to further enhance mechanical strengths at very early ages, i. e. <1 day, 

C4AF phase may be substituted by C12A7, although an increase of ~100ºC in the maximum burning 

temperature is needed and the durability with respect to sulfate attack is limited [19,20]. This 

formulation relies on the equilibrium system C2S-C4A3$-C12A7-CA [21] where aluminate phases 

and C4A3$ are responsible for the early strength development, while the C2S provides good 

secondary hardening. Cements from this chemical system would combine calcium aluminate 

cement and sulfoaluminate cement performances. Whatever the formulation proposed, some 

questions about the clinker formation process remain open. For instance, the avoidance of the 

formation of some non-hydraulic phases, such as C2AS or C5S2$ [22,23] at the expense of C4A3$. 

BSA cement hydration is a complex process, but there is already a significant amount of literature 

on the subject [24,25]. Therefore, advanced techniques and chemical tools must be developed in 

order to better understand BSA cements hydration. X-ray powder diffraction (XRPD) is an 

appropriate technique to identify, quantify and characterize the crystalline phase(s) involved in the 

hydration reactions. The application of Rietveld methodology [26] to XRPD data in order to obtain 

quantitative phase analyses (QPA) has been demonstrated for anhydrous cement materials [27-31], 

including the quantification of the amorphous fraction by adding a suitable standard [32]. Attempts 

to quantify the hydration processes of cements using XRPD and the Rietveld method have also been 

published in the last few years [33,34]. The results obtained have shown the complexity of the 

hydration reactions mechanism even for pure synthetic clinker phases [35]. This complexity does 

not derive solely from the great variety of hydrated compounds, amorphous and crystalline, but also 

because certain phases (AFm phases) are difficult to quantify (and even to identify) due to their low 

crystallinity and sometimes polytypism. Furthermore, variations in composition (e.g. hydration 
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degree) with the corresponding changes in their powder patterns (both in the position and intensity 

of the peaks) may take place during the hydration of the cements, mainly for aluminate hydrates 

[36]. 

In spite of the complexity of the hydration reactions, some details about the hydration mechanisms 

in the system C4A3$-C$H2-H2O are well-established [37]. Furthermore, the hydration reactions of 

BSA cement pastes at early stages, 24 h, have already been studied at different temperatures (25, 

55, 85ºC) by calorimetry and XRPD [25]. However, QPA of the hydrated compounds were not 

performed. Despite the abundant literature on cement hydration, not all details of the hydration 

process have been clarified yet, in particular, the structural and chemical features of the first 

hydrous phases including a detailed study of the different chemical reactions. 

Here, we present a study of the clinker formation processes for aluminum-rich BSA clinkers 

containing C2S, C4A3$, C12A7 and CA as the main phases. We have determined the temperature and 

time of residence in the kilns to obtain an appropriate phase assemblage by X-ray diffraction jointly 

with the Rietveld method [26], among other techniques. Moreover, this work reports the results of 

hydration of aluminum-rich BSA cements. The hydration process of these BSA cements has been 

followed by in-situ synchrotron and laboratory X-ray powder diffraction [SXRPD, LXRPD], 

Rietveld methodology and chemical constraints. This last study is carried out in order to determine 

the hydration behavior in general and the role of gypsum, in particular. A calorimetric study is also 

presented. 

 

2. Experimental section. 

 

2.1. Material preparations. 

 

a) Synthesis of BSA clinkers.  
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Table 1 gives the nominal dosages, expressed as oxide, of the raw mixtures used to prepare the BSA 

clinkers. To fabricate those raw mixtures, 25-30 wt% of Kaolin (Aldrich), 3-9 wt% of -Al2O3 

(99.997% AlfaAesar), 60-64 wt% of calcium carbonate (99.95-100.05% AlfaAesar) and 4-6 wt% of 

pure gypsum were mixed. Theoretical mineralogical composition and nomenclature of BSA 

clinkers are also given in Table 1, where the numbers stand for the theoretical amounts of -C2S 

and C4A3$, for instance, BSA_60:20, means a clinker with 60 wt% of -C2S and 20 wt% of C4A3$, 

theoretical compositions. Raw materials were mixed by hand in an agate mortar with the aid of 

absolute ethanol and dried in an oven at 60ºC. This treatment was performed by triplicate. Various 

raw materials mixtures were pressed into pellets ~20 mm in diameter weighing ~3 g. The pellets 

were placed into Pt/Rh crucibles and calcined at 900ºC for 30 min after ramping up at a heating rate 

of 5 ºC/min. Then, the temperature was raised at the same rate to the final temperature (1250ºC, 

1300ºC or 1350ºC) and held for 15 or 30 min at the given temperature. Finally, the clinkers were 

quenched from this temperature by opening the furnace and taking the crucibles out and 

simultaneously applying air flow using a dryer. We obtained ~15 g of each clinker which were 

finely ground by hand with a tungsten carbide mortar and pestle to pass through a 100 m sieve 

prior to powder diffraction measurements. 

 

b) Preparation of BSA cements. 

BSA cements were prepared by mixing selected BSA clinkers (prepared as in section a)) with 

different dosages of gypsum. The added amounts of gypsum were: 5, 10 and 15 wt% to BSA_60:20 

and BSA_50:30. The cements are hereafter labeled as CxBSA_60:20 or CxBSA_50:30 where x=5, 

10 or 15 stands for the percentage of gypsum added to the clinkers. The Blaine parameters obtained 

for all cements were: C5BSA_60:20 485 m
2
/kg, C10BSA_60:20 551 m

2
/Kg, C15BSA_60:20 471 

m
2
/kg, C5BSA_50:30 423 m

2
/kg, C10BSA_50:30 502 m

2
/kg and C15BSA_50:30 470 m

2
/kg.  
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2.2. Analytical techniques. 

 

a) Laboratory X-ray powder diffraction (LXRPD). 

 

LXRPD for BSA clinkers: LXRPD data were recorded on an X'Pert MPD PRO diffractometer 

(PANalytical) using strictly monochromatic CuKα1 radiation (λ=1.54059Å) [Ge (111) primary 

monochromator] and working in reflection geometry ( /2 ). The optics configuration was a fixed 

divergence slit (1/2°), a fixed incident antiscatter slit (1°), a fixed diffracted anti-scatter slit (1/2°) 

and X'Celerator RTMS (Real Time Multiple Strip) detector, working in scanning mode with 

maximum active length. Data for each sample were collected from 10º to 70° (2θ) during 2 hours. 

The samples were rotated during data collection at 16 rpm in order to enhance particle statistics. 

The X-ray tube worked at 45 kV and 35 mA.  

LXRPD for BSA cement pastes: LXRPD in-situ hydration study for the CxBSA_60:20 (x= 5, 10 

and 15) and C5BSA_50:30 cements were performed at the application laboratory of PANalytical in 

Almelo (The Netherlands) with an X'Pert PRO MPD diffractometer in transmission geometry with 

/  goniometer, using CuKα1,2 radiation (λ=1.5418Å) and using a focusing X-ray mirror. This 

optical component is able to transform the divergent X-ray beam from a tube in line focus position 

to an intense beam that focuses onto the goniometer circle. The optics configuration was a fixed 

divergence slit (1/2°), a fixed incident antiscatter slit (1/2°), a Nickel filter of 0.020 mm in the 

diffracted beam path and a PIXcel RTMS (Real Time Multiple Strip) detector, working in scanning 

mode with full active length. Each pattern was collected from 5º to 55° (2θ) in repetition mode 

(three times) with total duration of 0.4 hours at selected times of hydration. The samples were 

rotated during data collection at 16 rpm in order to enhance particle statistics. The X-ray tube 

worked at 45 kV and 40 mA. Small batches of cement pastes were prepared by hand-mixing 0.10 g 
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of cement with 0.05 g of water, and immediately spread between two Kapton foils in the sample 

holder. The actual size of the paste samples was ~10.0 mm diameter x ~0.3 mm thickness.  

 

b) Synchrotron X-ray powder diffraction.  

 

SXRPD in-situ hydration studies were performed on the BM08 [Italian CRG “GILDA”] beamline of 

the European Synchrotron Radiation Facility, ESRF (Grenoble, France) in Debye-Scherrer 

(transmission) configuration for C10BSA_50:30. An image plate (IP) detector [38] was used 

working in two configurations: i) Translating mode (for the first four hours of hydration): the IP 

moves behind two slits with a constant speed and the diffraction pattern is recorded as a function of 

time. The slits select a vertical slice of the diffraction rings. The translation speed and the slit size 

can be chosen to fit the experimental requirements. The distance from IP to the sample was 217.0 

mm. ii) 2D pattern (for later ages, i.e. >4 hours): the slits are removed and the whole diffraction 

rings are collected during 5 min. The images recorded (in both configurations) in the IP detector 

were recovered using a Fuji BAS2500 laser scanner (16 bit/pixel with a minimum pixel size of 

50 50 m). The SXRPD patterns obtained in translating mode were extracted in 5 min slices using 

original software available at BM08. Powder patterns from 2D images were obtained by integration 

of the rings using FIT2D software [39]. The wavelength used was =0.6888 Å (18.00 keV) and 

calibrated with Si NIST (a=5.431195 Å). C10BSA_50:30 paste was prepared ex-situ by mixing 

cement with water at w/c = 0.5 and was immediately loaded in a cylindrical polycarbonate sample 

holder (15.0 mm diameter x 1.2 mm height) covered over both sides with Kapton slices. The sample 

holder was spun during data collection to improve the particle statistics and hence to obtain good QPA. 

The temperature within the experimental hutch was 20 2 ºC. 

 

c) XRPD data analysis.  
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LXRPD patterns of clinkers were analyzed by the Rietveld method with GSAS software package 

[40] by using a pseudo-Voigt peak shape function [41] with the asymmetry correction included 

[42]. The refined overall parameters were: background coefficients, cell parameters, zero-shift 

error, peak shape parameters and phase fractions. The structural descriptions used for fitting the 

anhydrous crystalline phases within the clinkers are given in Table 2 (including the Inorganic 

Crystal Structure Database, ICSD, collection codes). 

SXRPD and LXRPD patterns of cement pastes were analyzed by the Rietveld method with X’Pert 

Highscore Plus software from PANalytical B.V., version 2.2d. The refined overall parameters were: 

cell parameters, zero-shift error, W (Gaussian contribution) peak shape parameter and phase 

fractions. Background function was manually established using the base point tool of the software. 

Peak shapes were fitted by using the pseudo-Voigt function [42]. Table 3 gives the bibliographic 

references and ICSD collection codes for the structural descriptions of all hydrated crystalline 

phases.  

d) High Temperature Microscopy (HTM). 

 

The thermal behavior of BSA raw materials was analyzed by high temperature microscopy (HTM). 

The BSA_60:20 raw mix was selected to perform this study on a Leica (Wetzlar, Germany) system 

with automatic image analysis (EMI-version 1.5). The temperature was varied from RT up to 

1525ºC at a heating rate of 5 ºC/min. 

 

e) Thermal Analysis. 

 

Thermogravimetric and differential thermal analyses (TG-DTA) were performed on raw mixtures 

using a Netzsch STA 409 equipped with TASC 414/2 controller. The temperature was varied from 

RT up to 1450ºC at a heating/cooling rate of 5 ºC/min with a flux of air. 
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f) Scanning Electron Microscopy (SEM). 

 

Pieces of clinker pellets were examined using a JEOL SM 840 scanning electron microscope. The 

samples were metalized by gold sputtering for better image definition. 

 

g) Isothermal calorimetric study. 

 

The isothermal calorimetric study was performed for C5BSA_60:20, C10BSA_60:20, 

C5BSA_50:30 and C10BSA_50:30 in an eight channel Thermal Activity Monitor (TAM) 

instrument using glass ampoules. Pastes were prepared by mixing ~ 6 g of cement with water at a 

w/c ratio of 0.5, and the heat flow was collected up to 110 h at 20ºC. 

 

3. Results and discussion. 

 

3.1. Determination of temperature and time for clinkering. 

 

Figure 1a and 1b show, respectively, the TG and DTA curves for the BSA_60:20 raw mix, (selected 

as an example). Figure 1a shows decarbonation as the main weight loss, as expected Figure 1b 

displays a number of thermal effects. Two small endothermic peaks, corresponding to a weight loss 

resulting from the dehydration of gypsum and dehydroxylation of kaolin, are observed at ~100ºC 

and ~500ºC, respectively (points 1 and 2). The theoretical weight losses due to gypsum and kaolin 

are 0.8 and 3.9 wt%, respectively, while the experimental values were 0.7 and 3.8 wt%. The strong 

endotherm at ~800ºC (point 3), with an associated weight loss of 27.2 wt%, is due to the 

decomposition of CaCO3, (the theoretical value was 27.7 wt%). The sharp exothermic peak at 

~940ºC (point 4) corresponds to the coordination change of aluminum in meta-kaolin (amorphous) 
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during its transformation into a spinel-like transient phase prior to the formation of mullite [60,61]. 

Finally, the curve includes another small endothermic peak at ~1440ºC (point 5). This last effect 

corresponds to the α′H→α belite transformation upon heating [62]. This peak is within a large 

downward trend likely due to partial melting of the aluminate phases and also to C4A3$ partial 

decomposition. 

Figure 2 shows one of the results obtained in the HTM study. The graph represents area changes of 

the projected cylinder image as a function of temperature for BSA_60:20 raw mixture. We observed 

a contraction of the sample between 850-950ºC due to the decomposition of CaCO3 and the 

formation of the corresponding oxide. Between 950-1150ºC a significant expansion took place, 

presumably due to the occurrence of expansive chemical reactions likely related to the formation of 

calcium aluminates [4]. Between 1150-1300ºC, the area stays relatively constant. Finally, a sharp 

decrease of the projected area is observed above ~1300ºC due to sintering processes and possibly to 

the undesirable formation of a significant amount of liquid phase. 

 

3.2. Rietveld quantitative phase analysis (RQPA) of BSA clinkers. 

 

BSA clinkers are complex materials due to the presence of many crystalline phases and, moreover, 

some of these components display polymorphism. Table 4 shows RQPA for BSA_60:20 clinker at 

different temperatures and times of residence at that temperature, as well as the Rietveld agreement 

factor for the refinements. Rietveld results are normalized to 100% of crystalline phases (i.e. the 

presence of an amorphous/non-diffracting fraction is not taken into account). Inspecting the data in 

Table 4, it has to be highlighted that the percentage of free lime is lower than 2 wt% for all tests. 

This fact indicates that the main clinker formation processes are finished at ~1250ºC. However, at 

this temperature (1250ºC) the amount of C4A3$ is lower than that obtained at 1350ºC, so the 

production of these BSA clinkers should be between 1300-1350ºC. On the other hand, all the tested 
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procedures yielded clinkers with non-negligible percentages of gehlenite (C2AS). C2AS is described 

as intermediate phase in the mechanism of formation of these clinkers [63, 64]. In reference [65], a 

factor P, (= A/$), was defined, and it was stated that clinkers with P=3.82 or lower at 1300ºC do not 

contain C2AS but those with P over 3.82 may have some. Furthermore, gehlenite can remain above 

1200ºC [66] in calcium aluminate cements (CACs). The P values for clinkers BSA_60:20, 

BSA_60:30 and BSA_50:30 are 8.3, 5.3 and 6.8, respectively. Consistent with the above references, 

C2AS was observed in all of these clinkers.  

Small amounts of the low-temperature polymorph of dicalcium silicate, -C2S, were also found. 

This phase is formed on cooling by the polymorphic transformation, -C2S → -C2S, but it is 

hydraulically inactive and therefore its presence is undesirable in clinkers. The formation of -C2S 

is enhanced by i) prolonged holding times at high temperatures, ii) low cooling rates and iii) the 

absence of foreign ions such as sodium or potassium [13] which could stabilize the -form. The 

presence of -C2S phase in these laboratory BSA clinkers is associated mainly with iii). Final 

clinker mineralogical compositions were almost the same for the two high temperature holding 

times tested, so the shorter time would be the best option in practice for obvious environmental and 

economic reasons. Figure 3 shows the Rietveld plot for BSA_60:20 prepared at 1350ºC for 15 min 

as an example, with the major peaks for each phase labeled. RQPA, HTM and TG-DTA results 

show that 15 minutes at 1350ºC is an appropriate burning condition for making these aluminum-

rich BSA clinkers. To avoid the decomposition of Klein’s phase, the clinkering temperature should 

not be higher than 1350ºC [67]. 

Two other BSA clinkers, BSA_60:30 and BSA_50:30, were prepared following the procedure 

determined above: 15 minutes at 1350ºC. The elemental and theoretical mineralogical compositions 

are given in Table 1. RQPA were performed for these two clinkers in order to follow the clinker 

formation process - see Table 5. The percentages of main phases (C2S and C4A3$) were quite close 
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to the expected values, although some minor mineralogical components were also observed in all of 

these clinkers. 

The main objective of this study is to obtain “environmentally-friendly” clinkers. The methodology 

proposed here to manufacture these aluminum-rich BSA clinkers reduces CO2 emissions from the 

reduction of calcite in the raw feed. For the production of a ton of an ordinary Portland clinker with 

60 wt% of C3S, 20 wt% of C2S, 12 wt% of C4AF and 8 wt% of C3A, 1.2 tons of calcite are used 

releasing 0.53 tons of CO2 into atmosphere. The production of the BSA clinkers proposed in this 

study, i. e. BSA_60:20, BSA_60:30, BSA_50:30, needs 0.95, 0.92 and 0.88 tons, respectively, of 

calcite. The reductions of CO2 arising from the decarbonation of calcite, compared to that of OPC, 

are 20.8, 24.5 and 26.4 wt%, respectively. These numbers arise only from the reduction of the 

amount of calcite used in the process, but in parallel, there are similar reductions in the amount of 

fuel required for this highly endothermic reaction. Furthermore, the reduction of 100ºC in the 

clinkering temperature will permit a small reduction of CO2 coming from fuel as a result of reduced 

kiln shell heat losses. Another aspect to be borne in mind is the milling processes of clinker. It is 

known that belite-rich clinkers without C4A3$ are more difficult to mill than ordinary Portland 

clinkers [2]. However clinkers with Klein’s salt are often more porous, due to the negligible/small 

amount of liquid phase formed in the burning process, and easier to grind [68,69]. We have 

performed a SEM study of pieces of clinker pellets (without milling) in order to examine the texture 

of the clinkers. Figure 4 shows the SEM photographs of (a) a belite-rich clinker [10] and (b) 

BSA_50:30, prepared under the conditions detailed in this work. From these images, it is clear than 

BSA clinkers are more porous than belite-rich clinkers, which should favor their grindability, as 

already reported [68,69]. 

 

3.3. Rietveld quantitative phase analysis (RQPA) of cement pastes. 
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All hydrated cements were measured continuously during the first hours of hydration. After that 

time, isolated patterns were collected to study later ages. Fig. 5 shows, as an example, the time-

resolved LXRPD patterns for C5BSA_60:20 paste during the first 8 hours [20 patterns collected 

each 24 minutes (8 min/pattern  3 repetitions)]. In these first hours of hydration, some changes in 

the phase assemblage were observed. For instance, the diminution of Klein’s salt and the 

appearance of ettringite can be observed, and their diffraction peaks are labeled with a plus symbol 

and an asterisk, respectively. Initially C2AH8 was also formed, but at later ages it starts to react and 

finally disappears. This evolution with time is highlighted by a dashed line in Fig. 5. All the patterns 

were analyzed in order to identify the mineralogical phases that were appearing, and RQPA was 

performed for selected times of hydration. Tables 6-9 give the direct Rietveld results for all the 

cement pastes studied. In these tables, initial anhydrous phase assemblages are included, (t0). All the 

cements contain C12A7 which reacts very quickly, as expected. On the other hand, C4A3$ and CA 

hydration kinetics are relatively slow. C2AS does not react with water at room temperature, and -

C2S phase is hydraulically inactive at early ages. As a consequence, their percentages should be 

invariable. RQPA percentages for -C2S and C2AS appear to increase with time, (Tables 6-9). 

However, it should be noted that RQPA results are normalized to 100 wt% of crystalline phases.  

Three main points characterize the hydration process: i) disappearance of crystalline anhydrous 

phases; ii) appearance of both amorphous and crystalline hydrate phases; and iii) diminution of free 

water. Since RQPA results are normalized to 100 wt% of crystalline phases, the percentages of 

slowly-hydrating anhydrous phases such as -C2S, appear to increase during hydration due to the 

overall decrease of crystalline phases within the probed volume. Hence, in order to fully extract all 

the information about the hydration of cement pastes, the direct RQPA results need to be 

normalized to include the amorphous phases and free water. The methodology used here is based on 
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the assumption that one crystalline phase remains unreacted from one powder pattern to the next. At 

early ages -C2S is assumed not to react, so -C2S percentage and Rietveld results are used to infer 

the amounts of the other phases that are reacting. However, this assumption is not true at later ages, 

e.g. later than ~30 hours for C10BSA_50:30 paste. Therefore, we have adopted an alternative 

methodology to carry out the normalization of the RQPA for C10BSA_50:30. After inspecting 

direct RQPA for this paste, Table 9, C2AS phase, which is hydraulic inactive, has been assumed to 

be constant to normalize data after 33.8 hours. Once the percentage of a reacting phase is obtained, 

the stoichiometric reactions are considered. 

 

3.4. Normalization of RQPA results. 

 

The normalization procedure given just below was performed on four cement pastes, one measured 

with SXRPD and three with LXRPD. As this is a new methodology, it is advisable to start using a 

technique with lowest associated errors, i.e. high resolution penetrating synchrotron X-ray powder 

diffraction, which overcomes most of the drawbacks of LXRPD [27]. However, once the 

methodology is established it can be extended to laboratory X-ray powder diffraction, a much more 

accessible technique. 

The initial (t=0.0 h) phase assemblage of each cement paste is 66.7 wt% of anhydrous cement and 

33.3 wt% of free water (w/c=0.5). Figures 6-9 show the normalized Rietveld results for all the 

cements studied. The normalization was performed step by step from a certain hydration time to the 

following one. To do so, two sets of data are considered in each step: normalized phase assemblage 

at tx (including free water and amorphous phases) and direct Rietveld phase assemblage at ty, were x 

and y stands for hours of hydration and always x<y. For example, to obtain normalized RQPA at t0.6 

for C5BSA_60:20, normalized RQPA at t0 (the previous time) is used. Thus, normalized phase 

assemblage at t0 is: 36.7 wt% of -C2S, 12.4 wt% of C4A3$, 10.9 wt% of C12A7, 2.3 wt% of CA, 1.1 
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wt% of C2AS, 3.3 wt% of gypsum and 33.3 wt% of free water. On the other hand, t0.6 direct 

Rietveld results are given in Table 6. During the first hour ettringite (AFt) is the only crystalline 

hydrate observed to form, presumably according to the following reactions: 

C12A7 + 12 C$H2 + 113 H → 4 C6A$3H32 + 3 AH3   (1) 

3 CA + 3 C$H2 + 32 H → 4 C6A$3H32 + 2 AH3   (2) 

C4A3$ + 2 C$H2 + 34 H → C6A$3H32 + 2 AH3   (3) 

As mentioned above, the amounts of C12A7, CA and C4A3$ reacting were calculated on the 

assumption that -C2S percentage remained invariant. So, the ratio between crystalline phases at the 

same hydration time must be constant and it is mathematically expressed in (4): 

X -)tAluminate(

)S(tC-β

)tAluminate(

)S(tC-β

N0

N02

R0.6

R0.62
    (4) 

where -C2S(t0.6)R and aluminates(t0.6)R stand for Rietveld percentages of -C2S, and C12A7, CA or 

C4A3$ phases, respectively, at 0.6 h (Table 6). On the other hand, -C2S(t0)N and aluminates(t0)N 

stand for percentages of these phases at normalized t0, and X is the amount of aluminate reacted at 

0.6 h. In this example, X was 1.9 for C12A7, 0.1 for CA and -0.3 for C4A3$. The (small) negative 

value for C4A3$ indicates that this phase does not react during this time. Thus the total amount of 

water reacting, considering only (1) and (2), was 2.4 wt%. These first reactions assume that AH3 is 

formed. However, crystalline AH3 was not identified by XRPD. In literature this phase is often 

reported to be based on hydrous alumina using the term “AH3” [66] and it is considered as ill-

crystallized or amorphous phase at early stages. Therefore, using stoichiometric constraints and the 

X value previously calculated, the total amount of amorphous AH3 derived in this step was 0.6 

wt%. Finally, to re-normalize at t0.6, direct Rietveld results are recalculated to include 30.9 wt% 

(33.3 wt% - 2.4 wt%) of free water and 0.6 wt% of amorphous-AH3. This strategy was followed to 

normalize each RQPA results, for C5BSA_60:20 up to t8.2. Figure 10 shows the Rietveld plot for 
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C5BSA_60:20 at t4.2, as an example of a cement paste. Main diffraction peaks of AFt, C4A3$ and -

C2S are labeled. 

In the acceleration period, when gypsum is consumed or a passive precipitate of other phases cover 

the particle surfaces, the formation of ettringite is stopped and the following hydration reactions 

start to take place: 

C12A7 + 51 H → 6 C2AH8 + AH3  (5) 

2 CA + 11 H → C2AH8 + AH3  (6) 

2 C3A + 27 H → C2AH8 + C4AH19  (7) 

C4A3$ + 18 H → C4A$H12 + 2 AH3  (8) 

C4A3$ + 22 H → C4A$H16 + 2 AH3  (9) 

Additionally, CAH10 appears in the C5BSA_50:30 cement pastes at later ages, which we assume is 

due to the following reaction: 

CA + 10 H → CAH10  (10) 

C4A$H12 and C4A$H16, hereafter named as AFm-12 and AFm-16, respectively, belong to an 

isostructural group of compounds (AFm-phases). These compounds have a layer structure with 

general formula [Ca2Al(OH)6]X·xH2O where X denotes one formula unit of a singly charged anion 

(for instance OH
-
) or half a formula unit of a doubly charged anion (for instance SO4

2-
) placed 

within the interlayer space jointly with water molecules. The presence of phases with different layer 

spacings is justified twofold: i) by the partial anion replacement OH
-
/SO4

2-
 within the AFm phases; 

and ii) by the progressive release of the water molecules as a consequence of the hydration of other 

phases. For instance, AFm-12 interlayer spacing is variable between 8.2-8.9 Å since forms a solid 

solutions where the SO4
2-

 groups may be partly replaced by OH
-
 anions. After several hours of 

hydration, C4A$H14 (AFm-14) also appears, presumably by dehydration of AFm-16, see equation 

(11). On the other hand, -C2S starts to react but does not simply react with water, as portlandite 

does not appear. Instead, it reacts with gibbsite to yield stratlingite (C2ASH8) according to reaction 
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(12). It must be noted that gehlenite itself is thought not to hydrate as its direct RQPA content 

increases with time.  

C4A$H16 → C4A$H14 + 2 H   (11) 

C2S + AH3 + 5 H → C2ASH8   (12) 

The crystal structure published in [56] for AFm-12 has been used to fit and quantify AFm-14 and 

AFm-16 phases by adjusting their c-values. CAH10 phase has been quantified using the structural 

description published in [57]. Figure 11 shows the low angle region of the SXRPD Rietveld plot for 

C10BSA_50:30 cement at t33.8. Main peaks in this region have been labeled including the basal d-

spacings. AFm-12, AFm-14 and AFm-16 have the interlayer d-spacings at 8.3, 9.5 and 10.3 Å, 

respectively [13]. It is also well known that C2AH8 is an AFm-type phase with an interlayer d-

spacing close to 10.7 Å [70,71]. We have used the crystalline phase ratios to elucidate the reactivity 

of C12A7, CA and C3A to form C2AH8 according to (5), (6) and (7) and C4A3$ to form AFm-12 or 

AFm-16 according to (8) and (9) reactions.  

C2AH8 is a metastable AFm-type phase and there is no full structural description available. To fit 

the diffraction peaks arising from this phase, we have used an average hexagonal structural 

description, s. g. P6122, with a=b=5.7880 Å and c=64.5018 Å, to be reported elsewhere. This 

structure has been obtained by SXRPD ab initio structure determination from a sample with other 

crystalline phases. We have to highlight that two hydrate aluminates are formed in reaction (7), 

C2AH8 and C4AH19. X-ray patterns of these two phases are almost coincident, so we have 

quantified both as one phase, with C2AH8 stoichiometry. The amount of C2AH8 increases slightly 

with time, reaching a maximum for C5BSA_60:20 at t3.8. However, higher hydration times produce 

a decrease of its content, disappearing completely at later ages. 

To conclude the normalization, it is necessary to mention that the determined crystalline 

percentages of AFm-type phases by Rietveld method are smaller than those derived from the 

consumption of C12A7, CA, C3A or C4A3$. Therefore, amorphous calcium aluminum hydrates of 



 18 

unknown composition, written generically as C-A-H, have to be included from this indirect 

observation [72]. 

The formation of AFm-type phases has been also confirmed by calorimetric studies. Figure 12 

shows a selected range (0-20 hours) of the heat flow (power) and overall heat evolution (enthalpy) 

curves for the four studied pastes. Signal for the first 45 min of hydration were not recorded due to 

experimental requirements for stabilization. The main acceleration period starts between 1 and 3 

hours after mixing. Two broad power peaks are observed for all pastes in the interval from 1 to 10 

hours. The first broad signal is likely associated with ettringite and C-A-H gel formation. The 

remaining signals (in the 5-7 hours interval) are likely related to C-A-H gel and AFm-type phases 

formation. The overall heat evolved for C5BSA_60:20, C10BSA_60:20, C5BSA_50:30 and 

C10BSA_50:30 cements for 110 hours were: 232, 215, 277 and 244 J/g, respectively. For any given 

clinker, a decrease of the total heat evolved at a give time is observed when the amount of added 

gypsum increases. This behavior is probably mainly due to the reduction in the content of 

anhydrous cement phases if more gypsum is added. On the other hand, all of these cements show 

higher hydration enthalpies than a typical belite-rich cement (with no C4A3$ but with some C3S) 

which was slightly lower than 190 J/g at 6 days (144 hours) [10]. 

The effect of the amount of added gypsum on the hydration process was also investigated. To do so, 

C15BSA_60:20 paste was also prepared and studied. Figures 13a and 13b show the ettringite and 

C2AH8 phase evolutions with the time for C5BSA_60:20, C10BSA_60:20, and C15BSA_60:20 

cements. Ettringite formation is favored in cement with 15 wt% of gypsum added, according to 

reactions (1), (2), and (3), shown above; conversely, the amount of C2AH8 is higher in the cements 

with less gypsum. Related to this behavior, Figures 14a and 14b show the low angle region of the 

LXRPD patterns for C10BSA_50:30 and C5BSA_50:30 at t4.2, respectively. Even the most intense 

diffraction peak of C2AH8 phase is barely visible in the cement with 10 wt% gypsum. 
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Finally, after the quantitative phase analysis and the normalization step, the degree of reaction of 

selected phases can be calculated at a given time according to (13). Table 10 shows the degree of 

reaction for selected phases at early ages (up to ~17 h) for C5BSA_60:20, C10BSA_60:20 and 

C5BSA_50:30 cements and at later ages (~34 h, and ~ 58 h) for C10BSA_50:30. 

Several conclusions can be inferred by inspecting Table 10: i) -C2S begins to hydrate at early ages 

(~34 h) compared with belite-rich cements [73], ii) C12A7 reacts with water faster than the other 

aluminates (C3A, C4A3$, CA and CA2) in C5BSA_60:20, C10BSA_60:20 and C5BSA_50:30 

cements and at the same rate as C3A in C10BSA_50:30 (in this case, both phases disappear 

completely at 8.5 h), and finally iii) C4A3$ hydration is strongly affected by the amount of gypsum 

added, as expected. This phase reacts more slowly in cements with 5 wt% of gypsum, because 

almost all of the gypsum is very rapidly consumed by the hydration of C12A7. On the other hand, in 

cements with 10 wt% of gypsum the degree of reaction is much larger during the first 2 hours. 

Degree of reaction of phase-n (%) = 
t0

nphaseW

t
nphaseW

t0
nphaseW

× 100  (13) 

 

4. Conclusions 

 

The burnability of raw mixtures for making aluminum-rich belite sulfoaluminate clinkers has been 

studied by TG-DTA, HTM and X-ray powder diffraction with Rietveld quantitative phase analysis. 

15 minutes at 1350ºC was found to be sufficient for good clinkering. Under these conditions, the 

amounts of C4A3$ found in the resulting BSA clinkers were very close to the target values. Full 

quantitative phase analyses are reported for the three clinker compositions tested. However, more 

research is needed in order to understand all of the reactions taking place in the production of these 
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clinkers. Although partial inhibition of C2AS formation is obtained in the presence of SO3, there 

were small percentages of this phase in all of the laboratory BSA clinkers made here. 

Phase assemblage evolution with time during the hydration of BSA cements made from the above 

clinkers with added gypsum was determined by normalization of Rietveld results taking into 

account free water and amorphous phases that appear during hydration. QPA of synchrotron 

diffraction data for C10BSA_50:30 cement shows that -C2S reacts at early ages (33.8 h) compared 

to a belite-rich Portland cement (in which this phase does not react during the first three months). 

The early hydration of -C2S in these BSA cements is not the usual reaction to yield C-S-H gel and 

portlandite, as portlandite is not detected in the pastes. Instead, belite appears to react with 

amorphous AH3 to yield stratlingite. On the other hand, the aluminate phases react faster than the 

Klein’s salt, which hydrates at a higher pace than belite phases. The hydration mechanisms of the 

aluminate phases in these clinkers are shown to be strongly dependent on the initial amount of 

gypsum added. A methodology to simultaneously quantify several different AFm phases is also 

reported. 

 

Acknowledgments 

 

We thank Dr. A.H. De Aza (ICV-CSIC, Madrid) for his help during the high-temperature 

microscopy study. We also thank financial support from P06-FQM-01348 research grant (Junta de 

Andalucía, Spain). ESRF is thanked for the provision of X-ray synchrotron powder diffraction 

beam time. We also thank Dr. Marco Merlini (University of Milan) for his help during the 

synchrotron X-ray experiment. 

 

References 



 21 

[1] J.S. Damtoft, J. Lukasik, D. Herfort, D. Sorrentino, E.M. Gartner, Sustainable development and 

climate change initiatives, Cem Concr Res 38 (2) (2008) 115–127. 

[2] E. Gartner, Industrially interesting approaches to “low CO2” cements, Cem Concr Res 34 (9) 

(2004) 1489-1498. 

[3] A.K. Chatterjee, High Belite Cements. Present Status and Future Technological Options: Part I 

and Part II, Cem Concr Res 26 (8) (1996) 1213-1237. 

[4] A.G. De la Torre, M.A.G. Aranda, A.H. De Aza, P. Pena, S. De Aza, Belite Portland Clinkers. 

Synthesis and Mineralogical Analysis, Bol Soc Esp Ceram V 44 (3) (2005) 185-191. 

[5] C.D. Popescu, M. Muntean, J.H. Sharp, Industrial Trial Production of Low Energy Belite 

Cement, Cem Concr Composites 25 (7) (2003) 689-693.  

[6] F.P. Glasser, L. Zhang, High-performance cement matrices based on calcium sulfoaluminate–

belite compositions, Cem Concr Res 31 (2001) 1881-1886. 

[7] L. Zhang, M. Z. Su, Y. M. Wang, Development of the use of sulfo- and ferro-aluminate cements 

in China, Adv Cem Res 11 (1999) 15-21. 

[8] J. Stark, A. Muller, R. Seydel, K. Jost, Conditions of the Existence of Hydraulically Active 

Belite Cement, Proceedings of the 8th International Congress of Cement Chemistry, Rio de Janeiro, 

1986, vol II, pp. 306-309. 

[9] A. Gies, D. Knofel, Influence of Alkalies on the Composition of Belite-Rich Cement Clinkers 

and the Technological Properties of the Resulting Cements, Cem Concr Res 16 (3) (1986) 411-422. 

[10] K. Morsli, A.G. de la Torre, S. Stöber, A.J.M. Cuberos, M. Zahir, M.A.G. Aranda, Quantitative 

Phase Analysis of Laboratory Active Belite Clinkers by Synchrotron Powder Diffraction, J Amer 

Ceram Soc 90 (10) (2007) 3205-3212. 

[11] K. Morsli, A.G. de la Torre, M. Zahir, M.A.G. Aranda, Mineralogical Phase Analysis of Alkali 

and Sulfate Bearing Belite Rich Laboratory Clinkers, Cem Concr Res 37 (2007) 639-646. 

[12] G.S. Li, E.M. Gartner, High-belite sulfoaluminate clinker: fabrication process and binder 

preparation, French patent application 04-51586 (publication 2873366), 27/01/2006. 

[13] H.F.W. Taylor. Cement Chemistry. Thomas Telford. London (1997). 

[14] K. Quillin, Performance of belite-sulfoaluminate cements, Cem Concr Res 31 (2001) 1341-

1349. 



 22 

[15] C.D. Lawrence, The Production of Low-Energy Cements, in: J. Bensted and P. Barnes (Eds), 

Structures and Performance of Cements, Spon Spress. London and New York, (2002). 

[16] I. Janotka, U. Krajci, S.C. Mojumdar, Performance of sulphoaluminate-belite cement with high 

C4A3$ content, Ceram Silik 51 (2007) 74-81. 

[17] D. Adolfsson, N. Menad, E. Viggh, B. Bjorkman, Hydraulic properties of sulphoaluminate 

belite cement based on steelmaking slags, Adv Cem Res 19 (2007) 133-138. 

[18] J. Pera, J. Ambroise, New applications of calcium sulfoaluminate cement, Cem Concr Res 34 

(2004) 671-676. 

[19] A. Wolter, Belite cements and low energy clinker, Cement International 3 (2005) 106-117. 

[20] G.L. Valenti, M. Marroccoli, F. Montagnaro, M. Nobili, A. Telesca, Synthesis, hydration 

properties and environmental friendly features of calcium sulfoaluminate cements, Proceedings of 

the 12th International Congress of Cement Chemistry, Montreal, (2007), W3 11.2. 

[21] Y.B. Pliego-Cuervo, F.P. Glasser, The role of sulphates in cement clinkering: subsolidus phase 

relations in the system CaO-Al2O3-SiO2-SO3, Cem Concr Res 9 (1979) 51-56. 

[22] P. Arjunan, M.R. Silsbee, D.M. Roy, Sulfoaluminate-belite cement from low-calcium fly ash 

and sulfur-rich and other industrial by-products, Cem Concr Res 29 (1999) 1305-1311. 

[23] H. Li, D.K. Agrawal, J. Cheng, M.R. Silsbee, Microwave sintering of sulphoaluminate cement 

with utility wastes, Cem Concr Res 31 (2001) 1257-1261. 

[24] F.P. Glasser, L. Zhang, Calculation of the chemical water demand for hydration of calcium 

sulfoaluminate cement, Proceedings of the 4
th

 Beijing International Symposium on Cement and 

Concrete, Vol.3, Beijing, October 1998, pp. 38-44. 

[25] F.P. Glasser, L. Zhang, Hydration of calcium sulfoaluminate cement at less than 24 h, Adv 

Cem Res 11 (1) (1999) 35-41. 

[26] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J Appl 

Cryst 2 (2) (1969) 65-71. 

[27] A.G. De la Torre, A. Cabeza, A. Calvente, S. Bruque, M.A.G. Aranda, Full phase analysis of 

Portland clinker by penetrating synchrotron powder diffraction, Anal Chem 73 (2001) 151-156. 



 23 

[28] N.V.Y. Scarlett, I.C. Madsen, C. Manias, D. Retallack, On-line X-ray diffraction for 

quantitative phase analysis: Application in the Portland cement industry, Powder Diffr 16 (2) (2001) 

71-80. 

[29] A.G. De la Torre, M.A.G. Aranda, Accuracy in Rietveld quantitative phase analysis of 

Portland cements, J Appl Cryst 36 (5) (2003) 1169-1176. 

[30] V.K. Peterson, A.S. Ray, B.A. Hunter, A comparative study of Rietveld phase analysis of 

cement clinker using neutron, laboratory X-ray, and synchrotron data, Powder Diffr 21 (1) (2006) 

12-18. 

[31] L. León-Reina, A. G. De la Torre, J. M. Porras-Vázquez, M. Cruz, L. M. Ordonez, X. Alcobé, 

F. Gispert-Guirado, A. Larrañaga-Varga, M. Paul, T. Fuellmann, R. Schmidt, M. A. G. Aranda, 

Round robin on Rietveld quantitative phase analysis of Portland cements, J Appl Cryst 42 (2009) 

906-916. 

[32] A.G. De la Torre, S. Bruque, and M.A.G. Aranda, Rietveld quantitative amorphous content 

analysis, J Appl Cryst 34 (2001) 196-202. 

[33] K.L. Scrivener, T. Fullmann, E. Gallucci, G. Walenta, E. Bermejo, Quantitative study of 

Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods, Cem 

Concr Res 34 (9) (2004) 1541-1547. 

[34] C. Hesse, F. Goetz-Neunhoeffer, J. Neubauer, M. Braeu, P. Gaeberlein, Quantitative in situ X-

ray diffraction analysis of early hydration of Portland cement at defined temperatures, Powder 

Diffraction 24 (2009) 112-115. 

[35] A.C. Jupe, X. Turrillas, P. Barnes, S.L. Colston, C. Hall, D. Häusermann, M. Hanfland, Fast in 

situ X-ray diffraction studies of chemical reactions: A synchrotron view of the hydration of 

tricalcium aluminate, Phys Rev B 53 (1996) R14697-R14700. 

[36] T. Matschei, B. Lothenbach, F.P. Glasser, The AFm phase in Portland cement, Cem Concr Res 

37 (2007) 118-130. 

[37] J. Havlica, S. Sahu, Mechanism of ettringite and monosulphate formation, Cem Concr Res 22 

(1992) 671-677. 

[38] C. Meneghini, G. Artioli, A. Balerna, A.F. Gualtieri, P. Norby, Multipurpose imaging-plate 

camera for in-situ powder XRD at the GILDA beamline, J Synchrotron Rad 8 (2001) 1162-1166. 



 24 

[39] A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Häusermann, Two-dimensional 

detector software: from real detector to idealised image or two-theta scan, High Pressure Res 14 

(1996) 235-248. 

[40] A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos 

National Laboratory Report LAUR 86-748. (2000). 

[41] P. Thompson, D.E. Cox, J.B. Hasting, Rietveld refinement of Debye-Scherrer synchrotron X-

ray data from Al2O3, J Appl Cryst 20 (2) (1987) 79-83. 

[42] L.W. Finger, D.E. Cox, A.P. Jephcoat, A correction for powder diffraction peak asymmetry 

due to diaxial divergence, J Appl Cryst 27 (1994) 892-900. 

[43] W.G. Mumme, R.J. Hill, G. Bushnell-Wye, E.R. Segnit, Rietveld structure refinement, crystal 

chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and 

related phases, N. Jb. Miner. Abh. 169 (1995) 35-68. 

[44] S. Udagawa, K. Urabe, M. Natsume, T. Yano, Refinement of the crystal-structure of -

Ca2SiO4, Cem Concr Res 10 (2) (1980) 139-144. 

[45] N. J. Calos, C.H.L. Kennard, A.K. Whittaker, R.L. Davis, Structure of calcium aluminate 

sulphate Ca4Al6O16S, J Solid State Chem 119 (1995) 1-7. 

[46] H. Saalfeld, W. Depmeier, Silicon-free compounds with sodalite structure, Kristall und 

Technik 7 (1972) 229-233. 

[47] W. Hoerkner, H. Mueller-Buschbaum, Zur Kristallstrucktur von CaAl2O4, J Inorg Nucl Chem 

38 (5) (1976) 983-984. 

[48] L. Palacios, A.G. De la Torre, S. Bruque, J.L. García Muñoz, S. García-Granda, D. 

Sheptyakov, M.A.G. Aranda, Crystal structures and in-situ formation study of mayenita electrides, 

Inorg Chem 46 (2007) 4167-4176. 

[49] V.I. Ponomarev, D.M. Kheiker, N.V. Belov, Crystal structure of calcium dialuminate, CA2, 

Kristallografiya 15 (1970) 1140-1143. 

[50] P. Mondal, J.W. Jeffery, The crystal structure of tricalcium aluminate, Ca3Al2O6, Acta Cryst B 

31 (1975) 689-697. 

[51] M. Kimata, N. Li, The structural property of synthetic gehlenite, Ca2Al2SiO7, N. Jb. Miner. 

Abh. 144 (1982) 254-267. 



 25 

[52] G. Natta, L. Passerini, Soluzioni solide, isomorfismo e simmorfismo tra gli ossidi dei metallic 

bivalenti. Sistemi: CaO-CdO, CaO-MnO, CaO-CoO, CaO-NiO, CaO-MgO, Gazzetta Chimica 

Italiana 59 (1929) 129-154. 

[53] A. Kirfel, G. Will, Charge density in anhydrite, CaSO4 from X-ray and neutron diffraction, 

Acta Cryst B36 (1980) 2881-2890. 

[54] A.G. De la Torre, M.G. López-Olmo, C. Álvarez-Rua, S. García-Granda, M.A.G. Aranda, 

Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses, 

Powder Diffraction 19 (2004) 240-246. 

[55] F. Goetz-Neunhoeffer, J. Neubauer, Refined ettringite (Ca6Al2(SO4)3(OH)12·26H2O structure 

for quantitative X-ray diffraction analysis, Powder Diffr 21(1) (2006) 4-11. 

[56] R. Allmann, Refinement of the hybrid layer structure [Ca2Al(OH)6]·0.5(SO4)·3H2O, Neues 

Jahrbuch fuer Mineralogie Monatshefte, (1977) 136-144. 

[57] F. Guirado, S. Galí, S. Chinchón, J. Rius, Crystal Structure Solution of Hydrated High-

Alumina Cement from X-ray Powder Diffraction Data, Angew Chem Int Ed Communications 

(1998) 72-75. 

[58] H. Saalfeld, M. Wedde, Refinement of the crystal structure of gibbsite, Al(OH)3, Zeitschrift 

fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 139 (1974) 129-135. 

[59] R. Rinaldi, M. Sacerdoti, E. Passaglia, Straetlingite: crystal structure, chemistry, and a 

reexamination of its polytype vertumnite, Eur J Mineral 2 (1990) 841-849. 

[60] J. Sanz, A. Madani, J.M. Serratosa, J.S. Moya, S. De Aza, Aluminium-27 and silicon-29 

magic-angle spining nuclear magnetic resonance study of the kaolinite–mullite transformation, J 

Am Ceram Soc 71 (10) (1988) C418-C421. 

[61] J. Sanz, I. Sobrados, A.L. Cavalieri, P. Pena, S. De Aza, J.S. Moya, Structural changes induced 

on mullite precursors by thermal treatment: A 
27

Al MAS-NMR investigation, J Am Ceram Soc 74 

(10) (1991) 2398-403. 

[62] K. Fukuda, A. Takeda, H. Yoshida, Remelting reaction of -Ca2SiO4 solid solutions confirmed 

in Ca2SiO4-Ca12Al14O33 pseudobinary system, J Am Ceram Soc 31 (2001) 1185-1189. 

[63] I. Odler. Special Inorganic cements, Taylor and Francis Publisher. Chapter 4 (2000) 69-74. 



 26 

[64] C.D. Lawrence, The production of low-energy cements, Lea´s Chemistry of Cement and 

Concrete Chapter 9 (1998) 421-470. 

[65] D. Jun-An, G. Wen-Min, S. Mu-Zhen, L. Xiu-Ying, “Sulfoaluminate cement series” Proceedings of the 

7th International Congress of Cement Chemistry, Paris, 1980, vol V, pp. 381-386. 

[66] K.L. Scrivener, A. Capmas, Calcium Aluminate Cements, Lea´s Chemistry of Cement and 

Concrete Chapter 13 (1998) 709-771. 

[67] F. Puertas, M.T.B. Varela, S.G. Molina, Kinetics of thermal decomposition of C4A3$ in air, 

Cem Concr Res 38 (2) (1995) 572-580. 

[68] I. Odler, H. Zhang, Investigations on high SO3 Portland clinkers and cements I. Clinker 

synthesis and cement preparation, Cem Concr Res 26 (9) (1996) 1307-1313. 

[69] L. Kacimi, A. Simon-Masseron, A. Ghomari, Z. Derriche, Reduction of clinkerization 

temperature by using phosphogypsum, J Hazardous Materials B137 (2006) 129-137. 

[70] E.M. Gartner, J.F. Young, D.A. Damidot, I. Jawed, Hydration of Portland cement in:. J. 

Bensted and P. Barnes (Eds), Structures and Performance of Cements, Spon Spress. London and 

New York 2002. 

[71] N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, J. Sipusic, Dehydration of a 

layered double hydroxide-C2AH8, Thermochim. Acta 464 (2007) 7-15. 

[72] J. Bensted, Calcium aluminate cements, in: J. Bensted, P. Barnes (Eds.), Structure and 

Performance of Cements, Spon Spress, London and New York, 2002. 

[73] A.J.M. Cuberos, A.G. De la Torre, M.C. Martín-Sedeño, L. Moreno-Real, M. Merlini, L.M. 

Ordónez, M.A.G. Aranda, Phase development in convencional and active belite cement pastes by 

Rietveld analysis and Chemicals constraints, Cem Concr Res 39 (10) (2009) 833-842. 

 

Figure Captions 

Figure 1. Thermogravimetric (a, left) and differential thermal analysis (b, right) curves for 

BSA_60:20 raw mixture. Main effects are highlighted and discussed in the text. 

Figure 2. High-temperature microscopy plot showing area changes of the projected cylinder image 

of BSA_60:20 raw mixture as a function of temperature. 
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Figure 3. Selected range of the Rietveld plot for BSA_60:20 clinker. Dots are the experimental 

scan, solid line is the calculated pattern and the bottom line is the difference curve. The major peaks 

for each phase are labeled. 

Figure 4. SEM photographs for (a) belite-rich clinker and (b) BSA_50:30 clinker. 

Figure 5. Time-resolved LXRPD raw data for C5BSA_60:20 cement hydration during the first 

hours. The inset shows an enlarged selected region (7-11°/2 ) for the same composition. Ettringite 

and Klein’s salt main diffraction peaks are labeled with an asterisk and plus symbol, respectively. 

C2AH8 evolution with time is highlighted by a dashed line. 

Figure 6. Normalized quantitative phase analysis results for C5BSA_60:20 paste up to 8.2 h from 

LXRPD data. 

Figure 7. Normalized quantitative phase analysis results for C10BSA_60:20 paste up to 15.2 h 

from LXRPD data. 

Figure 8. Normalized quantitative phase analysis results for C5BSA_50:30 paste up to 16.9 h from 

LXRPD data.  

Figure 9. Normalized quantitative phase analysis results for C10BSA_50:30 paste up to 57.6 h 

from SXRPD data. 

Figure 10. Selected range of the LXRPD Rietveld plot for C5BSA_60:20 paste after 4.2 h of 

hydration. Dots are the experimental data, solid line is the calculated pattern and the difference 

curve is given at the bottom. The major peaks for each phase are labeled.  

Figure 11. Low angle detail of the SXRPD Rietveld plot for C10BSA_50:30 paste after 33.8 h of 

hydration. Dots are the experimental data, solid line is the calculated pattern and the difference 

curve is given at the bottom. Individual patterns, from each crystalline phase, have been included 

and labeled. 

Figure 12. Selected range of calorimetric heat flow and overall evolved heat curves for the studied 

pastes. 

Figure 13. Evolution of (a) ettringite and (b) C2AH8 in the indicated pastes. 

Figure 14. Low angle detail of LXRPD patterns for (a) C10BSA_50:30 paste and (b) 

C5BSA_50:30 paste, at 4.2 h. Main peaks for AFt and C2AH8 phases have been labeled. The arrow 

highlights the absence of C2AH8 phase in (a). 
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Table 1. Nominal elemental composition of raw mixtures (expressed as oxides, wt%) and 

theoretical mineralogical composition (wt%) of BSA clinkers. 

 

 CaO SiO2 Al2O3 SO3 C2S C4A3$ C12A7 CA 

BSA_60:20 54.82 20.93 21.62 2.62 60 20 10 10 

BSA_60:30 54.30 20.93 20.84 3.94 60 30 5 5 

BSA_50:30 51.99 17.44 26.64 3.94 50 30 10 10 

 

Table 2. Bibliographic information and ICSD collection codes for all anhydrous crystalline phases. 

 

 reference ICSD code 

-C2S [43] 81096 

-C2S [44] 200707 

C4A3$ (ort) [45] 80361 

C4A3$ (cub) [46] 9560 

CA [47] 260 

C12A7 [48] 241243 

CA2 [49] 16191 
C3A [50] 1841 

C2AS [51] 31235 

C [52] 61550 

C$ [53] 16382 

 

Table 3. Bibliographic information and ICSD collection codes for all hydrated crystalline phases. 

 

 Bibliog. Ref. ICSD code 

C$H2 [54] 151692 

AFt [55] 155395 

AFm-12 [C4A$H12] [56] 100138 

CAH10 [57] 407150 

C2AH8 see text - 

AH3 [58] 6162 

C2ASH8 [59] 69413 
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Table 4. Rietveld quantitative phase analysis results of BSA_60:20 clinker, at different 

temperatures and times of clinkering, in wt% obtained from LXRPD data. Agreement factors (RWP) 

for the final refinements are also given.  

 

 1250ºC 1300ºC 1350ºC 

 15 min 30 min 15 min 30 min 15 min 30 min 

-C2S 57.0(1) 53.8(1) 54.8(1) 54.8(1) 55.8(1) 57.3(1) 

C4A3$ 17.0(1) 16.8(1) 18.3(1) 18.5(1) 19.6(1) 19.0(1) 

C12A7 13.2(1) 14.6(1) 15.2(1) 14.7(1) 13.5(1) 14.7(1) 

CA 4.2(2) 1.9(1) 2.0(1) 1.9(1) 4.4(2) 5.4(1) 

C2AS 5.2(1) 9.8(1) 7.8(1) 7.5(1) 4.3(1) 1.5(1) 

CA2 1.6(1) 0.4(1) - - - - 

CaO 0.8(1) 1.4(1) 0.7(1) 0.7(1) - - 

-C2S - - - 0.6(1) 1.9(1) 2.1(1) 

C3A 1.1(1) 1.3(1) 1.2(1) 1.3(1) 0.5(1) - 

RWP/% 7.3 6.7 6.5 6.9 6.2 6.2 
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Table 5. Quantitative phase analysis results (wt%) for the clinkers obtained at the final conditions 

(1350ºC for 15 min) determined from the Rietveld study. Nominal (expected) compositions are 

given in italics for comparison. Agreement factors (RWP) for the final refinements are also given. 

 

Phases BSA_60:20  BSA_60:30  BSA_50:30  

-C2S 55.8(1) 60 59.5(1) 60 52.1(1) 50 

C4A3$ 19.6(1) 20 27.7(1) 30 27.1(1) 30 

C12A7 13.5(1) 10 8.1(1) 5 3.0(1) 10 

CA 4.4(2) 10 1.6(1) 5 5.2(1) 10 

C2AS 4.3(1) - 0.5(1) - 1.8(1) - 

CA2 - - 0.7(1) - 2.8(2) - 

C3A 0.5(1) - 1.1(1) - 8.0(1) - 

-C2S 1.9(1) - 0.9(1) - - - 

RWP/% 6.2  6.2  7.4  

 

Table 6. Direct RQPA results for the hydration of C5BSA_60:20 paste from LXRPD data. 

 t0 t0.6 t2.2 t4.2 t6.2 t8.2 

 0.0 h 0.6 h 2.2 h 4.2 h 6.2 h 8.2 h 

-C2S 55.1(1) 53.8(3) 54.4(3) 57.0(4) 59.3(4) 60.5(4) 

C4A3$ 18.6(1) 18.7(2) 18.3(2) 16.8(2) 14.7(2) 14.9(2) 

C12A7 16.3(1) 13.1(2) 7.9(2) 1.3(2) 1.4(1) 1.4(2) 

CA 3.4(1) 3.2(2) 2.4(1) 1.5(1) 1.1(1) 1.2(1) 

C2AS 1.6(1) 1.0(1) 1.4(1) 2.7(1) 3.0(2) 3.2(2) 

C$H2 5.0(-) 1.6(1) - - - - 

AFt - 8.6(2) 14.1(3) 14.9(2) 16.2(3) 16.2(3) 

AFm-16 - - 0.4(1) 1.7(2) 1.2(2) 0.3(1) 

C2AH8 - - 1.2(2) 4.0(2) 3.0(2) 2.3(3) 
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Table 7. Direct RQPA results for the hydration of C10BSA_60:20 paste from LXRPD data. 

 t0 t0.7 t1.7 t2.7 t3.2 t5.2 t8.7 t14.2 t15.2 

 0.0 h 0.7 h 1.7 h 2.7 h 3.2 h 5.2 h 8.7 h 14.2 h 15.2 h 

-C2S 52.1(1) 50.4(4) 49.5(4) 49.5(4) 50.0(4) 51.6(4) 51.5(4) 51.4(4) 51.9(4) 

C4A3$ 17.6(1) 17.5(3) 14.8(2) 12.5(1) 11.9(2) 12.0(2) 12.2(2) 12.0(2) 12.1(2) 

C12A7 15.5(1) 12.4(2) 3.4(2) 2.2(2) 1.8(2) 1.7(1) 1.9(2) 2.0(2) 2.0(2) 

CA 3.2(1) 2.6(2) 2.1(2) 1.6(2) 1.7(2) 1.3(1) 1.8(2) 2.2(2) 2.1(2) 

C2AS 1.5(1) 0.9(1) 1.7(2) 2.4(2) 2.5(2) 1.9(1) 1.9(1) 2.2(1) 1.9(1) 

C$H2 10.0(-) 5.9(2) 1.4(1) 1.2(1) 1.4(1) 1.6(1) 1.5(1) 1.7(1) 1.8(1) 

AFt - 10.3(2) 25.2(3) 27.8(3) 28.0(3) 28.9(3) 29.0(3) 28.4(3) 28.1(3) 

AFm-16 - - 0.7(2) 1.1(4) 0.9(3) 0.5(1) - - - 

C2AH8 - - 1.3(1) 1.8(3) 1.9(3) 0.5(2) 0.2(1) 0.2(1) 0.2(1) 
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Table 8. Direct RQPA results for the hydration of C5BSA_50:30 paste from LXRPD data. 

 t0 t0.5 t1.3 t2.1 t2.9 t4.1 t15.3 t16.9 

 0.0 h 0.5 h 1.3 h 2.1 h 2.9 h 4.1 h 15.3 h 16.9 h 

-C2S 50.0(1) 44.8(3) 45.5(3) 46.3(3) 45.2(3) 46.5(3) 53.7(4) 53.6(3) 

C4A3$ 25.4(1) 25.8(3) 25.5(3) 25.7(3) 26.6(3) 26.4(3) 20.2(3) 20.5(3) 

C12A7 9.0(1) 5.8(2) 4.2(2) 2.9(2) 1.9(2) 0.8(1) 0.5(1) 0.4(1) 

CA 4.1(1) 4.6(2) 4.0(2) 4.1(2) 3.9(2) 3.0(2) 1.4(1) 1.5(1) 

C3A 2.3(1) 1.6(2) 2.1(2) 2.1(1) 1.8(1) 1.6(1) 1.1(1) 1.0(1) 

C2AS 2.7(1) 2.1(1) 2.4(2) 2.7(2) 2.6(2) 2.7(2) 3.6(2) 3.7(1) 

CA2 1.6(1) 1.1(2) 1.1(2) 1.0(2) 1.0(2) 1.1(2) 0.7(2) 1.0(2) 

C$H2 5.0(-) 0.6(1) 0.3(1) - - - - - 

AFt - 13.7(4) 14.4(4) 14.0(3) 15.1(4) 15.4(4) 16.6(4) 16.1(4) 

AFm-16 - - 0.3(1) 0.3(1) 0.6(1) 0.6(1) 0.5(1) 0.3(1) 

C2AH8 - - 0.3(1) 0.8(1) 1.3(1) 1.9(1) 0.6(2) 0.8(2) 

CAH10 - - - - - - 1.3(1) 1.2(1) 
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Table 9. Direct RQPA results for the hydration of C10BSA_50:30 paste from SXRPD data. 

 t0 t0.9 t3.8 t7.8 t8.5 T33.8 t57.6 

 0.0 h 0.9 h 3.8 h 7.8 h 8.5 h 33.8 h 57.6 h 

-C2S 47.3(1) 46.1(4) 44.9(3) 45.5(3) 46.7(3) 43.4(4) 44.0(3) 

C4A3$ 24.0(1) 22.9(3) 21.1(2) 20.7(2) 3.4(2) 2.8(2) 3.0(2) 

C12A7 8.6(1) 4.4(1) 1.7(1) 0.8(1) - - - 

CA 3.9(1) 4.0(2) 3.8(2) 2.6(2) 0.8(1) 0.4(2) 0.3(2) 

C3A 2.2(1) 0.4(1) 0.4(1) 0.4(1) - - - 

C2AS 2.5(1) 2.3(1) 1.9(2) 2.1(1) 3.3(2) 3.3(2) 3.2(2) 

CA2 1.5(1) 1.3(3) 1.6(2) 1.3(2) 1.2(3) - - 

C$H2 10.0(-) 2.5(1) 0.8(1) 0.7(1) - - - 

AFt - 16.0(3) 23.8(3) 24.8(3) 32.1(4) 32.6(4) 32.8(4) 

AFm-16 - - - - 3.3(1) 1.1(2) - 

AFm-12 - - - - 1.2(1) 1.5(2) 1.5(2) 

AFm-14 - - - - 3.9(2) 3.9(2) 4.0(2) 

C2AH8 - - - 1.2(1) 1.8(1) 0.3(1) - 

AH3 - - - - 2.2(1) 1.9(1) 1.7(1) 

C2ASH8 - - - - - 8.7(2) 9.5(2) 

C$H2        
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Table 10. Degree of reaction (%) for clinker phases in the pastes at selected times. 

Phase C5BSA_60:20 C10BSA_60:20 C5BSA_50:30 C10BSA_50:30 

 2 h 8 h 2 h 7 h 12 h 2 h 4 h 17 h 4 h 9 h 34 h 58 h 

-C2S 0 0 0 0 0 0 0 0 0 0 17 17 

C12A7 51 93 86 88 88 68 92 97 79 100 100 100 

C3A - - - - - 0 33 60 80 100 100 100 

CA 30 70 52 52 52 0 30 70 0 81 92 92 

C4A3$ 2 32 32 37 38 0 0 34 9 86 89 89 
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