229 research outputs found
Environmental Flow Regimes for Dysidea avara Sponges
The aim of our research is to design tank systems to culture Dysidea avara for the production of avarol. Flow information was needed to design culture tanks suitable for effective production. Water flow regimes were characterized over a 1-year period for a shallow rocky sublittoral environment in the Northwestern Mediterranean where D. avara sponges are particularly abundant. Three-dimensional Doppler current velocities at 8¿10-m depths ranged from 5 to 15 cm/s over most seasons, occasionally spiking to 30¿66 cm/s. A thermistor flow sensor was used to map flow fields in close proximity (¿2 cm) to individual sponges at 4.5-, 8.8-, and 14.3-m depths. These ¿proximal flows¿ averaged 1.6 cm/s in calm seas and 5.9 cm/s during a storm, when the highest proximal flow (32.9 cm/s) was recorded next to a sponge at the shallowest station. Proximal flows diminished exponentially with depth, averaging 2.6 cm/s¿±¿0.15 SE over the entire study. Flow visualization studies showed that oscillatory flow (0.20¿0.33 Hz) was the most common regime around individual sponges. Sponges at the 4.5-m site maintained a compact morphology with large oscula year-around despite only seasonally high flows. Sponges at 8.8 m were more erect with large oscula on tall protuberances. At the lowest-flow 14.3-m site, sponges were more branched and heavily conulated, with small oscula. The relationship between sponge morphology and ambient flow regime is discussed
Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA
We assessed spatio-temporal patterns of diversity in deep-sea sediment communities using metabarcoding. We chose a recently developed eukaryotic marker based on the v7 region of the 18S rRNA gene. Our study was performed in a submarine canyon and its adjacent slope in the Northwestern Mediterranean Sea, sampled along a depth gradient at two different seasons. We found a total of 5,569 molecular operational taxonomic units (MOTUs), dominated by Metazoa, Alveolata and Rhizaria. Among metazoans, Nematoda, Arthropoda and Annelida were the most diverse. We found a marked heterogeneity at all scales, with important differences between layers of sediment and significant changes in community composition with zone (canyon vs slope), depth, and season. We compared the information obtained from metabarcoding DNA and RNA and found more total MOTUs and more MOTUs per sample with DNA (ca. 20% and 40% increase, respectively). Both datasets showed overall similar spatial trends, but most groups had higher MOTU richness with the DNA template, while others, such as nematodes, were more diverse in the RNA dataset. We provide metabarcoding protocols and guidelines for biomonitoring of these key communities in order to generate information applicable to management efforts
Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons
Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on these bottoms of ecological and economic importance
Vertical transmission and successive location of symbiotic bacteria during embryo development and larva formation in Corticium candelabrum (Porifera: Demospongiae)
7 páginas, 8 figuras.This study reports on the transfer of heterotrophic bacteria from parental tissue to oocytes in the
Mediterranean bacteriosponge Corticium candelabrum (Homosclerophorida) and the description of the successive
locations of the microsymbionts during embryo development through transmission and scanning electron
microscopy. Eight different types of symbiotic bacteria are described morphologically. These eight bacteria
morphotypes are found in both adult individuals and larvae. Symbiotic bacteria are transferred to oocytes, but
not to spermatocytes. Bacteria are first located at the oocyte periphery below a thick collagen layer and then
they migrate to the oocyte cytoplasm, forming spherical clusters. After cleavage, the bacteria can be found
in the free space between blastomeres but mainly accumulate at the embryo periphery below the follicular
cells that surround the embryo. Once the blastocoel is formed, the symbiotic bacteria move to this central
cavity where they actively divide by bipartition, increasing their number considerably. Many examples of
phagocytosed bacteria in the proximal zone of the larval cells are observed at this stage. Consequently, bacteria
may represent a complementary source of energy for free larvae and settlers before they are able to capture
food from the surrounding water.This study was partially funded by the project INTERGEN
CTM2004-05265-C02-02/MAR from the CICYT (Spain)Peer reviewe
Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 +/- 1.1 specimens m(-2) (approximately 230 gWW m(-2) of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 +/- 0.7 specimens m(-2), approximately 315 gWW m(-2) of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m(-2)). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic-pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 +/- 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter
The Rodeo de la Bordalesa Tonalite Dykes as a Lower Devonian Magmatic Event: Geochemical and Isotopic Age Constraints
One of the ‘pre-Carboniferous units’ from the San Rafael Block is the sedimentary Río Seco de los Castaños Formation, which is distributed in isolated outcrops within the Block. At the Rodeo de la Bordalesa area two small intrusives in the mentioned unit were mapped, composed of tonalitic rocks, lamprophyre (‘spessartite-kersantite’) and aplite dykes.We present in this paper, geochemical and isotopic data from the gray tonalitic rocks with abundant mafic enclaves and late magmatic aplite veins. The country rocks are a folded sequence of feldspathic sandstones, wackes, and shales. The Rodeo de la Bordalesa tonalite dykes are characterized by high to medium potassium concentration, with metaluminous composition and I-type calc-alkaline signature. The 401 ± 4 Ma U–Pb zircon age corresponds to the emplacement time and it is confirmed by the K–Ar biotite age. The Rb–Sr whole rocks and biotite age of 374 ± 4 Ma could be related to deformation during the ‘Chanic’ tectonic phase. Nd model ages (TDM) show an interval between 1 and 1.6 Ga, indicating Mesoproterozoic age derivation, whereas the negative εNd is typical from crustal sources. The crystallization age for the Rodeo de la Bordalesa tonalite corresponds to a Lower Devonian time and suggests that part of the Late Famatinian magmatic event is present in the San Rafael Block. The dykes are contemporaneous with the large peraluminous batholith in Pampeanas Ranges, with the transpressional shear belts during ‘Achalian’ event and could be correlated with the Devonian magmatism present in the southern part of the Frontal Cordillera. The geochemical and geochronological data allow us to differentiate the Rodeo de la Bordalesa tonalite from the mafic rocks exposed at the El Nihuil area.Facultad de Ciencias Naturales y Muse
Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions
Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets.European research project ERC-250350/IPBSL. A.S.-N.acknowledges support from the P11-RNM-7067 (Junta de Andaluc a-C.E.I.C.-S.G.U.I.T.) projectPeer Reviewe
The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer
Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping
Silurian-Devonian Land-Sea Interaction within the San Rafael Block, Argentina: Provenance of the Río Seco de los Castaños Formation
The Río Seco de los Castaños Formation (RSC) is one of the ‘pre-Carboniferous units’ outcropping within the San Rafael Block assigned to Upper Silurian–Lower Devonian age. We review the provenance data obtained by petrography and geochemical-isotope analyses as well as the U–Pb detrital zircon ages. Comparison with La Horqueta Formation is also discussed. The main components of this marine fine-grained siliciclastic platform are sandstones and mudstones. The conglomerates are restricted to channel fill deposits developed mainly at the Lomitas Negras location. A low anchizone for the RSC was indicated by illite crystallinity index. From the geochemical proxies described above (Manassero et al. in Devonian Change: Case studies in Palaeogeography and Palaeoecology. Geological Society, 2009) a provenance from an unrecycled crust with an average composition similar to depleted compared with average Upper Continental Crust is suggested. TDM ages are within the range of the Mesoproterozoic basement and Palaeozoic supracrustal rocks of the Precordillera-Cuyania terrane. εNd values of the RSC are similar to those from sedimentary rocks from the Lower Palaeozoic carbonate-siliciclastic platform of the San Rafael Block. These data suggest an Early Carboniferous (Mississipian) low-metamorphic (anchizone) event for the unit. It is correlated with the ‘Chanic’ tectonic phase that affected the Precordillera-Cuyania terrane and also linked to the collision of the Chilenia terrane in the western pre-Andean Gondwana margin. As final remarks we can comment that the studied RSC samples show dominant source derivation from Famatinian (Late Cambrian-Devonian) and Pampean-Brasiliano (Neoproterozoic-Early Cambrian) cycles. Detritus derived from the Mesoproterozoic basement are scarce. U–Pb data constrain the maximum sedimentation age of the RSC to the Silurian–Early Devonian.Centro de Investigaciones Geológica
Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean
0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
- …