54 research outputs found

    Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018

    Get PDF
    Background: Vibriosis cases in Northern European countries and countries bordering the Baltic Sea increased during heatwaves in 2014 and 2018. Aim: We describe the epidemiology of vibriosis and the genetic diversity of Vibrio spp. isolates from Norway, Sweden, Denmark, Finland, Poland and Estonia in 2018, a year with an exceptionally warm summer. Methods: In a retrospective study, we analysed demographics, geographical distribution, seasonality, causative species and severity of non-travel-related vibriosis cases in 2018. Data sources included surveillance systems, national laboratory notification databases and/or nationwide surveys to public health microbiology laboratories. Moreover, we performed whole genome sequencing and multilocus sequence typing of available isolates from 2014 to 2018 to map their genetic diversity. Results: In 2018, we identified 445 non-travel-related vibriosis cases in the study countries, considerably more than the median of 126 cases between 2014 and 2017 (range: 87-272). The main reported mode of transmission was exposure to seawater. We observed a species-specific geographical disparity of vibriosis cases across the Nordic-Baltic region. Severe vibriosis was associated with infections caused by Vibrio vulnificus (adjOR: 17.2; 95% CI: 3.3-90.5) or Vibrio parahaemolyticus (adjOR: 2.1; 95% CI: 1.0-4.5), age >= 65 years (65-79 years: adjOR: 3.9; 95% CI: 1.7-8.7; >= 80 years: adjOR: 15.5; 95% CI: 4.4-54.3) or acquiring infections during summer (adjOR: 5.1; 95% CI: 2.4-10.9). Although phylogenetic analysis revealed diversity between Vibrio spp. isolates, two V. vulnificus clusters were identified. Conclusion: Shared sentinel surveillance for vibriosis during summer may be valuable to monitor this emerging public health issue.Peer reviewe

    Increased risk of hospitalisation and intensive care admission associated with reported cases of SARS-CoV-2 variants B.1.1.7 and B.1.351 in Norway, December 2020-May 2021

    Get PDF
    Introduction Since their emergence, SARS-CoV-2 variants of concern (VOC) B.1.1.7 and B.1.351 have spread worldwide. We estimated the risk of hospitalisation and admission to an intensive care unit (ICU) for infections with B.1.1.7 and B.1.351 in Norway, compared to infections with non-VOC. Materials and methods Using linked individual-level data from national registries, we conducted a cohort study on laboratory-confirmed cases of SARS-CoV-2 in Norway diagnosed between 28 December 2020 and 2 May 2021. Variants were identified based on whole genome sequencing, partial sequencing by Sanger sequencing or PCR screening for selected targets. The outcome was hospitalisation or ICU admission. We calculated adjusted risk ratios (aRR) with 95% confidence intervals (CIs) using multivariable binomial regression to examine the association between SARS-CoV-2 variants B.1.1.7 and B.1.351 with i) hospital admission and ii) ICU admission compared to non-VOC. Results We included 23,169 cases of B.1.1.7, 548 B.1.351 and 4,584 non-VOC. Overall, 1,017 cases were hospitalised (3.6%) and 206 admitted to ICU (0.7%). B.1.1.7 was associated with a 1.9-fold increased risk of hospitalisation (aRR 95%CI 1.6–2.3) and a 1.8-fold increased risk of ICU admission (aRR 95%CI 1.2–2.8) compared to non-VOC. Among hospitalised cases, no difference was found in the risk of ICU admission between B.1.1.7 and non-VOC. B.1.351 was associated with a 2.4-fold increased risk of hospitalisation (aRR 95%CI 1.7–3.3) and a 2.7-fold increased risk of ICU admission (aRR 95%CI 1.2–6.5) compared to non-VOC. Discussion Our findings add to the growing evidence of a higher risk of severe disease among persons infected with B.1.1.7 or B.1.351. This highlights the importance of prevention and control measures to reduce transmission of these VOC in society, particularly ongoing vaccination programmes, and preparedness plans for hospital surge capacity.publishedVersio

    Erfaringsgjennomgang etter utvalgte utbrudd av covid-19 i Norge, desember 2020 – mars 2021

    Get PDF
    Source at https://www.fhi.no/Denne rapporten beskriver en erfaringsgjennomgang av utvalgte covid-19 utbrudd i Norge, desember 2020 – mars 2021. Rapporten har blitt ledet av en intern arbeidsgruppe ved Folkehelseinstituttet (FHI) og er gjennomført i samarbeid med Helsedirektoratet, utvalgte kommuner og tilhørende statsforvaltere våren 2021. Hensikten har vært å oppsummere erfaringer og lære underveis, særlig knyttet til håndtering av utbrudd med den engelske virusvarianten og bruk av forsterket TISK (testing, isolering, smittesporing og karantene). Denne prosessen har gitt relevant innsikt

    A Long-Term Low-Frequency Hospital Outbreak of KPC-Producing Klebsiella pneumoniae Involving Intergenus Plasmid Diffusion and a Persisting Environmental Reservoir

    Get PDF
    Background: To study the molecular characteristics of a long-term, low frequency outbreak of blaKPC-2 in a low prevalence setting involving the hospital environment. Methodology/Principal Findings: KPC-producing bacteria were screened by selective chromogenic agar and Real-Time PCR. The presence of antibiotic resistance genes was ascribed by PCRs and subsequent sequencing, and the KPC-producing isolates were phylogenetically typed using PFGE and multi-locus sequence typing. BlaKPC-2-plasmids were identified and analysed by S1-nuclease-PFGE hybridization and PCR based replicon typing. A ,97 kb IncFII plasmid was seen to carry blaKPC-2 in all of the clinical isolates, in one of the isolates recovered from screened patients (1/136), and in the Klebsiella pneumoniae and Enterobacter asburiae isolates recovered from the environment (sinks) in one intensive care unit. The K. pneumoniae strain ST258 was identified in 6 out of 7 patients. An intergenus spread to E. asburiae and an interspecies spread to two different K. pneumoniae clones (ST27 and ST461) of the blaKPC-2 plasmid was discovered. K. pneumoniae ST258 and genetically related E. asburiae strains were found in isolates of both human and environmental origins. Conclusions/Significance: We document a clonal transmission of the K. pneumoniae ST258 strain, and an intergenus plasmid diffusion of the IncFII plasmid carrying blaKPC-2 in this outbreak. A major reservoir in the patient population could not be unveiled. However, the identification of a persisting environmental reservoir of strains with molecular determinants linked to human isolates, suggests a possible role of the environment in the maintenance of this long-term outbreak

    Rapid identification of pathogens, antibiotic resistance genes and plasmids in blood cultures by nanopore sequencing

    No full text
    Bloodstream infections (BSI) and sepsis are major causes of morbidity and mortality worldwide. Blood culture-based diagnostics usually requires 1–2 days for identification of bacterial agent and an additional 2–3 days for phenotypic determination of antibiotic susceptibility pattern. With the escalating burden of antimicrobial resistance (AMR) rapid diagnostics becomes increasingly important to secure adequate antibiotic therapy. Real-time whole genome sequencing represents a genotypic diagnostic approach with the ability to rapidly identify pathogens and AMR-encoding genes. Here we have used nanopore sequencing of bacterial DNA extracted from positive blood cultures for identification of pathogens, detection of plasmids and AMR-encoding genes. To our knowledge, this is the first study to gather the above-mentioned information from nanopore sequencing and conduct a comprehensive analysis for diagnostic purposes in real-time. Identification of pathogens was possible after 10 minutes of sequencing and all predefined AMR-encoding genes and plasmids from monoculture experiments were detected within one hour using raw nanopore sequencing data. Furthermore, we demonstrate the correct identification of plasmids and blaCTX-M subtypes using de novo assembled nanopore contigs. Results from this study hold great promise for future applications in clinical microbiology and for health care surveillance purposes

    Rapid identification of pathogens, antibiotic resistance genes and plasmids in blood cultures by nanopore sequencing

    Get PDF
    Bloodstream infections (BSI) and sepsis are major causes of morbidity and mortality worldwide. Blood culture-based diagnostics usually requires 1–2 days for identification of bacterial agent and an additional 2–3 days for phenotypic determination of antibiotic susceptibility pattern. With the escalating burden of antimicrobial resistance (AMR) rapid diagnostics becomes increasingly important to secure adequate antibiotic therapy. Real-time whole genome sequencing represents a genotypic diagnostic approach with the ability to rapidly identify pathogens and AMR-encoding genes. Here we have used nanopore sequencing of bacterial DNA extracted from positive blood cultures for identification of pathogens, detection of plasmids and AMR-encoding genes. To our knowledge, this is the first study to gather the above-mentioned information from nanopore sequencing and conduct a comprehensive analysis for diagnostic purposes in real-time. Identification of pathogens was possible after 10 minutes of sequencing and all predefined AMR-encoding genes and plasmids from monoculture experiments were detected within one hour using raw nanopore sequencing data. Furthermore, we demonstrate the correct identification of plasmids and blaCTX-M subtypes using de novo assembled nanopore contigs. Results from this study hold great promise for future applications in clinical microbiology and for health care surveillance purposes

    Small-Scale Comparative Genomic Analysis of Listeria monocytogenes Isolated from Environments of Salmon Processing Plants and Human Cases in Norway

    No full text
    Listeria monocytogenes is a food-borne bacterium that give rise to the potentially life-threatening disease listeriosis. Listeriosis has been mandatorily notifiable in Norway since 1991. All clinical L. monocytogenes isolates are sent to the Norwegian Institute of Public Health (NIPH) for typing. Since 2005 Multi-Locus Variable number tandem repeats Analysis (MLVA) has been used for typing but was recently replaced by whole genome sequencing using core genome Multi-Locus Sequence Typing (cgMLST). In the present study, L. monocytogenes isolates collected at salmon processing plants in Norway in 2007 (n = 12) and 2015 (n = 14) were first subject to MLVA. Twelve clinical L. monocytogenes isolates with matching MLVA profile and sampling time were selected from the strain collection at NIPH. Twenty-one isolates from the salmon processing plants and all clinical isolates (n = 12) were whole genome sequenced and compared using cgMLST and in silico detection of virulence genes. cgMLST revealed four pairs of environmental–human isolates with ≤10 allelic differences over 1708 genes, indicating that they may be assigned as clonal, with the implication that they are descended from the same recent ancestor. No relevant difference in carriage of virulence genes was found between environmental or human isolates. The present study shows that L. monocytogenes strains that genetically resemble contemporary isolates from human listeriosis circulate in Norwegian salmon slaughterhouses, and carry the same virulence genes

    Small-Scale Comparative Genomic Analysis of Listeria monocytogenes Isolated from Environments of Salmon Processing Plants and Human Cases in Norway

    No full text
    Listeria monocytogenes is a food-borne bacterium that give rise to the potentially life-threatening disease listeriosis. Listeriosis has been mandatorily notifiable in Norway since 1991. All clinical L. monocytogenes isolates are sent to the Norwegian Institute of Public Health (NIPH) for typing. Since 2005 Multi-Locus Variable number tandem repeats Analysis (MLVA) has been used for typing but was recently replaced by whole genome sequencing using core genome Multi-Locus Sequence Typing (cgMLST). In the present study, L. monocytogenes isolates collected at salmon processing plants in Norway in 2007 (n = 12) and 2015 (n = 14) were first subject to MLVA. Twelve clinical L. monocytogenes isolates with matching MLVA profile and sampling time were selected from the strain collection at NIPH. Twenty-one isolates from the salmon processing plants and all clinical isolates (n = 12) were whole genome sequenced and compared using cgMLST and in silico detection of virulence genes. cgMLST revealed four pairs of environmental–human isolates with ≤10 allelic differences over 1708 genes, indicating that they may be assigned as clonal, with the implication that they are descended from the same recent ancestor. No relevant difference in carriage of virulence genes was found between environmental or human isolates. The present study shows that L. monocytogenes strains that genetically resemble contemporary isolates from human listeriosis circulate in Norwegian salmon slaughterhouses, and carry the same virulence genes

    Small-Scale Comparative Genomic Analysis of Listeria monocytogenes Isolated from Environments of Salmon Processing Plants and Human Cases in Norway

    Get PDF
    Listeria monocytogenes is a food-borne bacterium that give rise to the potentially life-threatening disease listeriosis. Listeriosis has been mandatorily notifiable in Norway since 1991. All clinical L. monocytogenes isolates are sent to the Norwegian Institute of Public Health (NIPH) for typing. Since 2005 Multi-Locus Variable number tandem repeats Analysis (MLVA) has been used for typing but was recently replaced by whole genome sequencing using core genome Multi-Locus Sequence Typing (cgMLST). In the present study, L. monocytogenes isolates collected at salmon processing plants in Norway in 2007 (n = 12) and 2015 (n = 14) were first subject to MLVA. Twelve clinical L. monocytogenes isolates with matching MLVA profile and sampling time were selected from the strain collection at NIPH. Twenty-one isolates from the salmon processing plants and all clinical isolates (n = 12) were whole genome sequenced and compared using cgMLST and in silico detection of virulence genes. cgMLST revealed four pairs of environmental–human isolates with ≤10 allelic differences over 1708 genes, indicating that they may be assigned as clonal, with the implication that they are descended from the same recent ancestor. No relevant difference in carriage of virulence genes was found between environmental or human isolates. The present study shows that L. monocytogenes strains that genetically resemble contemporary isolates from human listeriosis circulate in Norwegian salmon slaughterhouses, and carry the same virulence genes.publishedVersio
    corecore