16 research outputs found

    Towards a portable platform integrated with multi-spectral non-contact probes for delineating normal and breast cancer tissue based on near-infrared spectroscopy

    Get PDF
    Currently, the confirmation of diagnosis of breast cancer is made by microscopic examination of an ultra-thin slice of a needle biopsy specimen. This slice is conventionally formalin-fixed and stained with hematoxylin-eosin and visually examined under a light microscope. This process is labor-intensive and requires highly skilled doctors (pathologists). In this paper, we report a novel tool based on near-infrared spectroscopy (Spectral-IRDx) which is a portable, non-contact, and cost-effective system and could provide a rapid and accurate diagnosis of cancer. The Spectral-IRDx tool performs absorption spectroscopy at near-infrared (NIR) wavelengths of 850 nm, 935 nm, and 1060 nm. We measure normalized detected voltage (Vdn) with the tool in 10 deparaffinized breast biopsy tissue samples, 5 of which were cancer (C) and 5 were normal (N) tissues. The difference in Vdn at 935 nm and 1060 nm between cancer and normal tissues is statistically significant with p-values of 0.0038 and 0.0022 respectively. Absorption contrast factor (N/C) of 1.303, 1.551, and 1.45 are observed for 850 nm, 935 nm, and 1060 nm respectively. The volume fraction contrast (N/C) of lipids and collagens are reported as 1.28 and 1.10 respectively. Higher absorption contrast factor (N/C) and volume fraction contrast (N/C) signifies higher concentration of lipids in normal tissues as compared to cancerous tissues, a basis for delineation. These preliminary results support the envisioned concept for non-invasive and non-carcinogenic NIR-based breast cancer diagnostic platform, which will be tested using a larger number of samples

    Thermo-optic measurements and their inter-dependencies for delineating cancerous breast biopsy tissue from adjacent normal

    Get PDF
    The histopathological diagnosis of cancer is the current gold standard to differentiate normal from cancerous tissues. We propose a portable platform prototype to characterize the tissue's thermal and optical properties, and their inter-dependencies to potentially aid the pathologist in making an informed decision. The measurements were performed on 10 samples from five subjects, where the cancerous and adjacent normal were extracted from the same patient. It was observed that thermal conductivity (k) and reduced-scattering-coefficient (μ's) for both the cancerous and normal tissues reduced with the rise in tissue temperature. Comparing cancerous and adjacent normal tissue, the difference in k and μ's (at 940 nm) were statistically significant (p = 7.94e-3), while combining k and μ's achieved the highest statistical significance (6.74e-4). These preliminary results promise and support testing on a large number of samples for rapidly differentiating cancerous from adjacent normal tissues

    Complementary and Alternative Medicine for Cancer Care in India: Basic and Clinical Perspective

    No full text
    corecore