32 research outputs found

    Specific role for p85/p110β in GTP-binding-protein-mediated activation of Akt

    No full text
    We prepared CHO (Chinese hamster ovary) cells expressing both IR (insulin receptor) and A(1)R (A(1) adenosine receptor). Treatment of the cells with insulin or PIA [N(6)-(2-phenylisopropyl)adenosine], a specific A(1)R agonist increased Akt activity in the cells in a PI3K- (phosphoinositide 3-kinase) dependent manner. Transfection of p110β into the cells augmented the action of PIA with little effect on insulin. Introduction of a pH1 vector producing shRNA (short hairpin RNA) that targets p110β abolished PIA-induced Akt activation. By contrast, an shRNA probe targeting p110α did not impair the effects of PIA. The effect of PIA in p110α-deficient cells was attenuated effectively by both Δp85 and βARK-CT (β-adrenergic receptor kinase-C-terminal peptide). A Δp85-derived protein possessing point mutations in its two SH2 domains did not impair PIA action. These results suggest that tyrosine-phosphorylated proteins and Gβγ (βγ subunits of GTP-binding protein) are necessary for the specific function of p110β in intact cells. The p110β-middle (middle part of p110β) may play an important role in signal reception from GPCRs (GTP-binding-protein-coupled receptor), because transfection of the middle part impaired PIA sensitivity

    Chemistry and Biosynthesis of Thyroid Iodoproteins

    No full text
    corecore