15 research outputs found

    Transformation pathways of phasing out coal-fired power plants in Germany

    No full text
    BackgroundWhile there are plenty of studies investigating the market penetration of new technologies, phase-out processes of a predominant technology are rarely analyzed. The present study explores the case of a declining technology, employing the example of coal-fired power plants in Germany. These plants were promoted by governmental decision-makers as well as by the industry for a long time, but meanwhile, the phase-out or at least a cutback of coal-fired power plants is––not only in Germany––considered to be a key strategy for the transformation towards a sustainable society.MethodsWe investigate potential pathways of the future development of the coal-fired power plant sector in an extended multi-level perspective (MLP) framework that integrates economic, social, political, and technical aspects.ResultsTaking into account the fact that coal is losing its support from several important stakeholders (e.g., governmental decision-makers, utilities) due to, e.g., changes in the prioritization of political goals, changes in the economic framework, in actor constellations, and in public attitudes, coal-fired power plants tend to be pushed into niches or to disappear completely. ConclusionsA reasonable management of the niche technology “coal-fired power plants” could include a protection of space for ensuring a smooth removal of the links between the regime and the technology with respect to, e.g., social and environmental aspects. The phase-out pathways for the coal-fired power plants elaborated on in this paper help to better inform policy-makers to design transformation processes not only for coal-fired power but also for other declining technologies

    A review of the environmental impacts of biobased materials

    Get PDF
    Concerns over climate change and the security of industrial feedstock supplies have been opening a growing market for biobased materials. This development, however, also presents a challenge to scientists, policy makers, and industry because the production of biobased materials requires land and is typically associated with adverse environmental effects. This article addresses the environmental impacts of biobased materials in a meta-analysis of 44 life cycle assessment (LCA) studies. The reviewed literature suggests that one metric ton (t) of biobased materials saves, relative to conventional materials, 55 ± 34 gigajoules of primary energy and 3 ± 1 t carbon dioxide equivalents of greenhouse gases. However, biobased materials may increase eutrophication by 5 ± 7 kilograms (kg) phosphate equivalents/t and stratospheric ozone depletion by 1.9 ± 1.8 kg nitrous oxide equivalents/t. Our findings are inconclusive with regard to acidification (savings of 2 ± 20 kg sulfur dioxide equivalents/t) and photochemical ozone formation (savings of 0.3 ± 2.4 kg ethene equivalents/t). The variability in the results of life cycle assessment studies highlights the difficulties in drawing general conclusions. Still, common to most biobased materials are impacts caused by the application of fertilizers and pesticides during industrial biomass cultivation. Additional land use impacts, such as the potential loss of biodiversity, soil carbon depletion, soil erosion, deforestation, as well as greenhouse gas emissions from indirect land use change are not quantified in this review. Clearly these impacts should be considered when evaluating the environmental performance of biobased materials
    corecore