2,769 research outputs found
Incommensurate spin correlations in highly oxidized cobaltates LaSrCoO
We observe quasi-static incommensurate magnetic peaks in neutron scattering
experiments on layered cobalt oxides La2-xSrxCoO4 with high Co oxidation states
that have been reported to be paramagnetic. This enables us to measure the
magnetic excitations in this highly hole-doped incommensurate regime and
compare our results with those found in the low-doped incommensurate regime
that exhibit hourglass magnetic spectra. The hourglass shape of magnetic
excitations completely disappears given a high Sr doping. Moreover, broad
low-energy excitations are found, which are not centered at the incommensurate
magnetic peak positions but around the quarter-integer values that are
typically exhibited by excitations in the checkerboard charge ordered phase.
Our findings suggest that the strong inter-site exchange interactions in the
undoped islands are critical for the emergence of hourglass spectra in the
incommensurate magnetic phases of La2-xSrxCoO4.Comment: http://www.nature.com/articles/srep25117
Anyons and Chiral Solitons on a Line
We show that excitations in a recently proposed gauge theory for anyons on a
line in fact do not obey anomalous statistics. On the other hand, the theory
supports novel chiral solitons. Also we construct a field-theoretic description
of lineal anyons, but gauge fields play no role.Comment: 8 pages, revtex, no figure
Perturbative Expansion around the Gaussian Effective Potential of the Fermion Field Theory
We have extended the perturbative expansion method around the Gaussian
effective action to the fermionic field theory, by taking the 2-dimensional
Gross-Neveu model as an example. We have computed both the zero temperature and
the finite temperature effective potentials of the Gross-Neveu model up to the
first perturbative correction terms, and have found that the critical
temperature, at which dynamically broken symmetry is restored, is significantly
improved for small value of the flavour number.Comment: 14pages, no figures, other comments Typographical errors are
corrected and new references are adde
Local density of states and scanning tunneling currents in graphene
We present exact analytical calculations of scanning tunneling currents in
locally disordered graphene using a multimode description of the microscope
tip. Analytical expressions for the local density of states (LDOS) are given
for energies beyond the Dirac cone approximation. We show that the LDOS at the
and sublattices of graphene are out of phase by implying that the
averaged LDOS, as one moves away from the impurity, shows no trace of the
(with the Fermi momentum) Friedel modulation. This means that a
STM experiment lacking atomic resolution at the sublattice level will not be
able of detecting the presence of the Friedel oscillations [this seems to be
the case in the experiments reported in Phys. Rev. Lett. {\bf 101}, 206802
(2008)]. The momentum maps of the LDOS for different types of impurities are
given. In the case of the vacancy, features are seen in these maps. In
all momentum space maps, and features are seen. The
features are different from what is seen around zero momentum. An
interpretation for these features is given. The calculations reported here are
valid for chemical substitution impurities, such as boron and nitrogen atoms,
as well as for vacancies. It is shown that the density of states close to the
impurity is very sensitive to type of disorder: diagonal, non-diagonal, or
vacancies. In the case of weakly coupled (to the carbon atoms) impurities, the
local density of states presents strong resonances at finite energies, which
leads to steps in the scanning tunneling currents and to suppression of the
Fano factor.Comment: 21 pages. Figures 6 and 7 are correctly displayed in this new versio
Hadron and hadron-cluster production in a hydrodynamical model including particle evaporation
We discuss the evolution of the mixed phase at RHIC and SPS within
boostinvariant hydrodynamics. In addition to the hydrodynamical expansion, we
also consider evaporation of particles off the surface of the fluid. The
back-reaction of the evaporation process on the dynamics of the fluid shortens
the lifetime of the mixed phase. In our model this lifetime of the mixed phase
is <12 fm/c in Au+Au at RHIC and <6.5 fm/c in Pb+Pb at SPS, even in the limit
of vanishing transverse expansion velocity. Strangeness separation occurs,
especially in events (or at rapidities) with relatively high initial net baryon
and strangeness number, enhancing the multiplicity of MEMOs (multiply strange
nuclear clusters). If antiquarks and antibaryons reach saturation in the course
of the pure QGP or mixed phase, we find that at RHIC the ratio of antideuterons
to deuterons may exceed 0.3 and even anti-helium to helium>0.1. Due to
fluctuations, at RHIC even negative baryon number at midrapidity is possible in
individual events, so that the antibaryon and antibaryon-cluster yields exceed
those of the corresponding baryons and clusters.Comment: 17 pages, Latex, epsfig stylefil
Dissociation of vertical semiconductor diatomic artificial molecules
We investigate the dissociation of few-electron circular vertical
semiconductor double quantum dot artificial molecules at 0 T as a function of
interdot distance. Slight mismatch introduced in the fabrication of the
artificial molecules from nominally identical constituent quantum wells induces
localization by offsetting the energy levels in the quantum dots by up to 2
meV, and this plays a crucial role in the appearance of the addition energy
spectra as a function of coupling strength particularly in the weak coupling
limit.Comment: Accepted for publication in Phys. Rev. Let
Current-spin-density functional study of persistent currents in quantum rings
We present a numerical study of persistent currents in quantum rings using
current spin density functional theory (CSDFT). This formalism allows for a
systematic study of the joint effects of both spin, interactions and impurities
for realistic systems. It is illustrated that CSDFT is suitable for describing
the physical effects related to Aharonov-Bohm phases by comparing energy
spectra of impurity-free rings to existing exact diagonalization and
experimental results. Further, we examine the effects of a symmetry-breaking
impurity potential on the density and current characteristics of the system and
propose that narrowing the confining potential at fixed impurity potential will
suppress the persistent current in a characteristic way.Comment: 7 pages REVTeX, including 8 postscript figure
Pattern formation in 2-frequency forced parametric waves
We present an experimental investigation of superlattice patterns generated
on the surface of a fluid via parametric forcing with 2 commensurate
frequencies. The spatio-temporal behavior of 4 qualitatively different types of
superlattice patterns is described in detail. These states are generated via a
number of different 3--wave resonant interactions. They occur either as
symmetry--breaking bifurcations of hexagonal patterns composed of a single
unstable mode or via nonlinear interactions between the two primary unstable
modes generated by the two forcing frequencies. A coherent picture of these
states together with the phase space in which they appear is presented. In
addition, we describe a number of new superlattice states generated by 4--wave
interactions that arise when symmetry constraints rule out 3--wave resonances.Comment: The paper contains 34 pages and 53 figures and provides an extensive
review of both the theoretical and experimental work peformed in this syste
Early and Middle Holocene Hunter-Gatherer Occupations in Western Amazonia: The Hidden Shell Middens
We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region's past and offers a new context within which the late Holocene "Earthmovers" of the Llanos de Moxos could have emerged. © 2013 Lombardo et al
Diffusion Monte Carlo study of circular quantum dots
We present ground and excited state energies obtained from Diffusion Monte
Carlo (DMC) calculations, using accurate multiconfiguration wave functions, for
electrons () confined to a circular quantum dot. We analyze the
electron-electron pair correlation functions and compare the density and
correlation energies to the predictions of local spin density approximation
theory (LSDA). The DMC estimated change in electrochemical potential as
function of the number of electrons in the dot is compared to that from LSDA
and Hartree-Fock (HF) calculations.Comment: 7 pages, 4 eps figures. To be published in Phys. Rev. B, September
15th 2000. See erratum cond-mat/030571
- …
