108 research outputs found

    Steady State of microemulsions in shear flow

    Full text link
    Steady-state properties of microemulsions in shear flow are studied in the context of a Ginzburg-Landau free-energy approach. Explicit expressions are given for the structure factor and the time correlation function at the one loop level of approximation. Our results predict a four-peak pattern for the structure factor, implying the simultaneous presence of interfaces aligned with two different orientations. Due to the peculiar interface structure a non-monotonous relaxation of the time correlator is also found.Comment: 5 pages, 3 figure

    Lattice-gas simulations of Domain Growth, Saturation and Self-Assembly in Immiscible Fluids and Microemulsions

    Full text link
    We investigate the dynamical behavior of both binary fluid and ternary microemulsion systems in two dimensions using a recently introduced hydrodynamic lattice-gas model of microemulsions. We find that the presence of amphiphile in our simulations reduces the usual oil-water interfacial tension in accord with experiment and consequently affects the non-equilibrium growth of oil and water domains. As the density of surfactant is increased we observe a crossover from the usual two-dimensional binary fluid scaling laws to a growth that is {\it slow}, and we find that this slow growth can be characterized by a logarithmic time scale. With sufficient surfactant in the system we observe that the domains cease to grow beyond a certain point and we find that this final characteristic domain size is inversely proportional to the interfacial surfactant concentration in the system.Comment: 28 pages, latex, embedded .eps figures, one figure is in colour, all in one uuencoded gzip compressed tar file, submitted to Physical Review

    Lunar Exploration Orbiter (LEO): Providing a Globally Covered, Highly Resolved, Integrated Geological, Geochemical and Gephysical Data Base of the Moon

    Get PDF
    The German initiative for the Lunar Exploration Orbiter (LEO) originated from the national conference “Exploration of our Solar System”, held in Dresden in November 2006. Major result of this conference was that the Moon is of high interest for the scientific community for various reasons, it is affordable to perform an orbiting mission to Moon and it insures technological and scientific progress necessary to assist further exploration activities of our Solar System. Based on scientific proposals elaborated by 50 German scientists in January 2007, a preliminary payload of 12 instruments was defined. Further analysis were initated by DLR in the frame of two industry contracts, to perform a phase-zero mission definition. The Moon, our next neighbour in the Solar System is the first choice to learn, how to work and live without the chance of immediate support from earth and to get prepared for further and farther exploration missions. We have to improve our scientific knowledge base with respect to the Moon applying modern and state of the art research tools and methods. LEO is planed to be launched in 2012 and shall orbit the Moon for about four years in a low altitude orbit

    On the Production of π+π+\pi^+\pi^+ Pairs in pp Collisions at 0.8 GeV

    Get PDF
    Data accumulated recently for the exclusive measurement of the ppppπ+πpp\to pp\pi^+\pi^- reaction at a beam energy of 0.793 GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the ppnnπ+π+pp \to nn\pi^+\pi^+ reaction channel. The latter is expected to be the only ππ\pi\pi production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the ππ\pi\pi production process. No single event has been found, which meets all conditions for being a candidate for the ppnnπ+π+pp \to nn \pi^+\pi^+ reaction. This gives an upper limit for the cross section of 0.16 μ\mub (90% C.L.), which is more than an order of magnitude smaller than the cross sections of the other two-pion production channels at the same incident energy

    Manifestation of palmoplantar pustulosis during or after infliximab therapy for plaque-type psoriasis: report on five cases

    Get PDF
    Infliximab is a monoclonal antibody directed against TNF-α. It has been approved for use in rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, psoriatic arthritis and plaque-type psoriasis. In case reports, positive effects on pustular variants of psoriasis have also been reported. However, paradoxically, manifestation of pustular psoriasis and plaque-type psoriasis has been reported in patients treated with TNF antagonists including infliximab for other indications. Here, we report on 5 patients with chronic plaque-type psoriasis who developed palmoplantar pustulosis during or after discontinuation of infliximab therapy. In two of the five cases, manifestation of palmoplantar pustulosis was not accompanied by worsening of plaque-type psoriasis. Possibly, site-specific factors or a differential contribution of immunological processes modulated by TNF inhibitors to palmoplantar pustulosis and plaque-type psoriasis may have played a role

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Triple F - a comet nucleus sample return mission

    Get PDF
    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS. © The Author(s) 2008

    \pi^0 \pi^0 Production in Proton-Proton Collisions at Tp=1.4 GeV

    Get PDF
    The reaction pp->pppi0pi0 has been investigated at a beam energy of 1.4 GeV using the WASA-at-COSY facility. The total cross section is found to be (324 +- 21_systematic +- 58_normalization) mub. In order to to study the production mechanism, differential kinematical distributions have been evaluated. The differential distributions indicate that both initial state protons are excited into intermediate Delta(1232) resonances, each decaying into a proton and a single pion, thereby producing the pion pair in the final state. No significant contribution of the Roper resonance N*(1440) via its decay into a proton and two pions is foundComment: Submitted to PL

    Solar Coronal Plumes

    Get PDF
    Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL) images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV) and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
    corecore