56 research outputs found

    ÎČ2 integrin-mediated cell-cell contact transfers active myeloperoxidase from neutrophils to endothelial cells

    Get PDF
    Atherosclerosis and vasculitis both feature inflammation mediated by neutrophil-endothelial-cell (EC) contact. Neutrophil myeloperoxidase (MPO) can disrupt normal EC function, although the mechanism(s) by which MPO is transferred to EC are unknown. We tested the hypothesis that close, beta2-integrin-dependent neutrophil-EC contact mediates MPO transfer from neutrophils to EC. We used sensitive MPO assays and flow cytometry to detect MPO in EC and demonstrate that EC acquired MPO when contacted by neutrophils directly but not when EC and neutrophils were separated in transwells. The transfer was dependent on neutrophil number, exposure time, and incubation temperature. Transfer occurred in several EC types, increased with endotoxin, was not accompanied by MPO release into the medium and was not abrogated by inhibiting degranulation to secretagogues. Confocal microscopy showed MPO internalization by EC with cytoplasmic and nuclear staining. Neutrophils and EC formed intimate contact sites demonstrated by electron microscopy. Blocking CD11b or CD18 beta2-integrin chains, or using neutrophils from CD11b gene-deleted mice, reduced MPO transfer. EC-acquired MPO was enzymatically active, as demonstrated by its ability to oxidize the fluorescent probe aminophenyl fluorescein in the presence of a hydrogen peroxide source. The data suggest an alternative to EC uptake of soluble MPO, namely the cell contact-dependent, {beta}2-integrin-mediated transfer from neutrophils. The findings could be of therapeutic relevance in atherosclerosis and vasculitis

    Competitively disrupting the neutrophil-specific receptor-autoantigen CD177:proteinase 3 membrane complex reduces anti-PR3 antibody-induced neutrophil activation

    Get PDF
    CD177 is a neutrophil-specific receptor presenting the proteinase 3 (PR3) autoantigen on the neutrophil surface. CD177 expression is restricted to a neutrophil subset, resulting in CD177(pos)/mPR3(high) and CD177(neg)/mPR3(low) populations. The CD177(pos)/mPR3(high) subset has implications for anti-neutrophil cytoplasmic autoantibody (ANCA)-associated autoimmune vasculitis (AAV), wherein patients harbor PR3-specific ANCAs that activate neutrophils for degranulation. Here we generated high-affinity anti-CD177 monoclonal antibodies, some of which interfered with PR3 binding to CD177 (PR3 "blockers") as determined by surface plasmon resonance spectroscopy, and used them to test the effect of competing PR3 from the surface of CD177(pos) neutrophils. Because intact anti-CD177 antibodies also caused neutrophil activation, we prepared non-activating Fab fragments of a PR3 blocker and non-blocker that bound specifically to CD177(pos) neutrophils. We observed that Fab blocker clone 40, but not non-blocker clone 80, dose-dependently reduced anti-PR3 antibody binding to CD177(pos) neutrophils. Importantly, preincubation with clone 40 significantly reduced respiratory burst in primed neutrophils challenged with either monoclonal antibodies to PR3 or PR3-ANCA IgG from AAV patients. After separating the two CD177/mPR3 neutrophil subsets from individual donors by magnetic sorting, we found that PR3-ANCAs provoked significantly more superoxide production in CD177(pos)/mPR3(high) than in CD177(neg)/mPR3(low) neutrophils, and that anti-CD177 Fab clone 40 reduced the superoxide production of CD177(pos) cells to the level of the CD177(neg) cells. Our data demonstrate the importance of the CD177:PR3 membrane complex in maintaining a high ANCA epitope density and thereby underscore the contribution of CD177 to the severity of PR3-ANCA diseases

    Stat1 nuclear translocation by nucleolin upon monocyte differentiation

    Get PDF
    BACKGROUND: Members of the signal transducer and activator of transcription (Stat) family of transcription factors traverse the nuclear membrane through a specialized structure, called the nuclear pore complex (NPC), which represents a selective filter for the import of proteins. Karyophilic molecules can bind directly to a subset of proteins of the NPC, collectively called nucleoporins. Alternatively, the transport is mediated via a carrier molecule belonging to the importin/karyopherin superfamily, which transmits the import into the nucleus through the NPC. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we provide evidence for an alternative Stat1 nuclear import mechanism, which is mediated by the shuttle protein nucleolin. We observed Stat1-nucleolin association, nuclear translocation and specific binding to the regulatory DNA element GAS. Using expression of nucleolin transgenes, we found that the nuclear localization signal (NLS) of nucleolin is responsible for Stat1 nuclear translocation. We show that this mechanism is utilized upon differentiation of myeloid cells and is specific for the differentiation step from monocytes to macrophages. CONCLUSIONS/SIGNIFICANCE: Our data add the nucleolin-Stat1 complex as a novel functional partner for the cell differentiation program, which is uniquely poised to regulate the transcription machinery via Stat1 and nuclear metabolism via nucleolin

    The Cytosolic Protein G0S2 Maintains Quiescence in Hematopoietic Stem Cells

    Get PDF
    Bone marrow hematopoietic stem cells (HSCs) balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G0/G1 switch gene 2 (G0S2) are enriched in lineage− Sca-1+ c-kit+ (LSK) CD150+ CD48− CD41− cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150+ CD48− cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150+ CD48−) and progenitor cells (LS−K). Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150+ CD48− cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus

    ANCA-associated vasculitis.

    Get PDF
    The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are a group of disorders involving severe, systemic, small-vessel vasculitis and are characterized by the development of autoantibodies to the neutrophil proteins leukocyte proteinase 3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). The three AAV subgroups, namely granulomatosis with polyangiitis (GPA), microscopic polyangiitis and eosinophilic GPA (EGPA), are defined according to clinical features. However, genetic and other clinical findings suggest that these clinical syndromes may be better classified as PR3-positive AAV (PR3-AAV), MPO-positive AAV (MPO-AAV) and, for EGPA, by the presence or absence of ANCA (ANCA+ or ANCA-, respectively). Although any tissue can be involved in AAV, the upper and lower respiratory tract and kidneys are most commonly and severely affected. AAVs have a complex and unique pathogenesis, with evidence for a loss of tolerance to neutrophil proteins, which leads to ANCA-mediated neutrophil activation, recruitment and injury, with effector T cells also involved. Without therapy, prognosis is poor but treatments, typically immunosuppressants, have improved survival, albeit with considerable morbidity from glucocorticoids and other immunosuppressive medications. Current challenges include improving the measures of disease activity and risk of relapse, uncertainty about optimal therapy duration and a need for targeted therapies with fewer adverse effects. Meeting these challenges requires a more detailed knowledge of the fundamental biology of AAV as well as cooperative international research and clinical trials with meaningful input from patients

    Therapeutic targeting of cathepsin C::from pathophysiology to treatment

    Get PDF
    Cathepsin C (CatC) is a highly conserved tetrameric lysosomal cysteine dipeptidyl aminopeptidase. The best characterized physiological function of CatC is the activation of pro-inflammatory granule-associated serine proteases. These proteases are synthesized as inactive zymogens containing an N-terminal pro-dipeptide, which maintains the zymogen in its inactive conformation and prevents premature activation, which is potentially toxic to the cell. The activation of serine protease zymogens occurs through cleavage of the N-terminal dipeptide by CatC during cell maturation in the bone marrow. In vivo data suggest that pharmacological inhibition of pro-inflammatory serine proteases would suppress or attenuate deleterious effects of inflammatory/auto-immune disorders mediated by these proteases. The pathological deficiency in CatC is associated with Papillon-LefĂšvre syndrome. The patients however do not present marked immunodeficiency despite the absence of active serine proteases in immune defense cells. Hence, the transitory pharmacological blockade of CatC activity in the precursor cells of the bone marrow may represent an attractive therapeutic strategy to regulate activity of serine proteases in inflammatory and immunologic conditions. A variety of CatC inhibitors have been developed both by pharmaceutical companies and academic investigators, some of which are currently being employed and evaluated in preclinical/clinical trials

    Lessons from a double-transgenic neutrophil approach to induce antiproteinase 3 antibody-mediated vasculitis in mice

    No full text
    ANCA to either PR3 or MPO are found in patients with necrotizing vasculitis and glomerulonephritis. ANCA binding to their target antigens on neutrophils and subsequent neutrophil activation are pivotal disease mechanisms that lead to vascular inflammation and necrosis. ANCA interaction with PR3 is more complex than with MPO as the neutrophil-specific CD177 receptor is involved in PR3 surface expression and PR3-ANCA-induced neutrophil activation. Modeling human disease is important to clinical research. Highly successful mouse models of MPO-ANCA vasculitis exist; however, recapitulating PR3-ANCA vasculitis has not been successful. We generated double-transgenic (DT) mice that expressed human PR3 and CD177 under a myeloid-specific huMRP8 promoter in an attempt to model PR3-ANCA vasculitis. DT mice strongly expressed the human transgenes in and on murine neutrophils and bound murine and human anti-PR3 antibodies. Nevertheless, passive transfer of these antibodies into LPS-primed DT mice or immunization of C57BL/6 mice with human PR3 followed by irradiation and transplantation of DT bone marrow failed to induce glomerulonephritis. Further analyses revealed that anti-PR3 antibodies did not activate DT neutrophils as shown by superoxide generation. Moreover, we found that mice did not properly process human pro-PR3 into mature PR3 and, consequently, the signaling complex between PR3, CD177, and CD11b, which promotes neutrophil activation by anti-PR3 antibodies, failed to form. We conclude that important species differences in PR3 and CD177 exist between men and mice that prevented successful generation of a murine anti-PR3 antibody model

    Neutrophil serine proteases exert proteolytic activity on endothelial cells

    No full text
    Neutrophil serine proteases (NSPs) are released from activated neutrophils during inflammation. Here we studied the transfer of the three major NSPs, namely proteinase 3, human neutrophil elastase, and cathepsin G, from neutrophils to endothelial cells and used an unbiased approach to identify novel endothelial NSP substrates. Enzymatically active NSPs were released from stimulated neutrophils and internalized by endothelial cells in a dose- and time-dependent manner as shown by immunoblotting, flow cytometry, and the Boc-Ala substrate assay. Using terminal-amine isotopic labeling of substrates in endothelial cells, we identified 121 peptides from 82 different proteins consisting of 36 substrates for proteinase 3, 30 for neutrophil elastase, and 28 for cathepsin G, respectively. We characterized the extended cleavage pattern and provide corresponding IceLogos. Gene ontology analysis showed significant cytoskeletal substrate enrichment and confirmed several cytoskeletal protein substrates by immunoblotting. Finally, ANCA-stimulated neutrophils released all three active NSPs into the supernatant. Supernatants increased endothelial albumin flux and disturbed the endothelial cell cytoskeletal architecture. Serine protease inhibition abrogated this effect. Longer exposure to NSPs reduced endothelial cell viability and increased apoptosis. Thus, we identified novel NSP substrates and suggest NSP inhibition as a therapeutic measure to inhibit neutrophil-mediated inflammatory vascular diseases
    • 

    corecore