1

ANCA-associated vasculitis

3 4

7

A. Richard Kitching^{1†}, Hans-Joachim Anders², Neil Basu³, Elisabeth Brouwer⁴, Jennifer

- ⁵ Gordon⁵, David R. Jayne⁶, Joyce Kullman⁷, Paul A. Lyons^{6,8}, Peter A. Merkel⁹, Caroline O.S.
- ⁶ Savage¹⁰, Ulrich Specks¹¹ and Renate Kain¹²
- ⁸ ¹Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash
- 9 Medical Centre, Clayton, and Departments of Nephrology and Paediatric Nephrology,
- 10 Monash Health, Clayton, Australia.

¹¹ ² Renal Division, Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ludwig-

12 Maximilians University, Munich, Germany.

³ Institute of Infection, Immunity and Inflammation, University of Glasgow, UK

- ⁴ Vasculitis Expertise Centre Groningen, Department of Rheumatology and Clinical
- ¹⁵ Immunology, University of Groningen, University Medical Centre Groningen, Groningen,

16 Netherlands

- ⁵ Department of Neuroscience and Center for Neurovirology, Temple University School of
- 18 Medicine, Philadelphia, PA, USA
- ^{5 6} Department of Medicine, University of Cambridge School of Clinical Medicine,
- 20 University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- ²¹ ⁷ Vasculitis Foundation, Kansas City, MO, USA
- ⁸ Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah
- 23 Biomedical Centre University of Cambridge, Cambridge, UK
- ⁹ Division of Rheumatology, Departments of Medicine and Department of Biostatistics,
- ²⁵ Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- ¹⁰ Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham,
- 27 UK.
- ²⁸ ¹¹ Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and
- 29 Science, Rochester, MN, USA
- ³⁰ ¹² Department of Pathology, Medical University Vienna, Vienna, Austria
- 31
- ³² [†]email: richard.kitching@monash.edu
- 33

34 Abstract

The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are a group 35 of disorders involving severe, systemic, small-vessel vasculitis and are characterized by the 36 development of autoantibodies against the neutrophil proteins leukocyte proteinase 3 (PR3-37 ANCA) or myeloperoxidase (MPO-ANCA). The three AAV subgroups, namely granulomatosis 38 with polyangiitis (GPA), microscopic polyangiitis and eosinophilic GPA (EGPA), are defined on 39 the basis of clinical features. However, genetic and other clinical findings suggest that these 40 clinical syndromes may be better classified as PR3-positive AAV (PR3-AAV), MPO-positive 41 AAV (MPO-AAV) and, for EGPA, by the presence or absence of ANCA (ANCA⁺ or ANCA⁻, 42 respectively). Although any tissue can be involved in AAV, the upper and lower respiratory tract 43 and kidneys are most commonly and severely affected. AAVs have a complex and unique 44 pathogenesis, with evidence for a loss of tolerance to neutrophil proteins, which leads to ANCA-45 mediated neutrophil activation, recruitment and injury, with effector T cells also involved. 46 Without therapy, prognosis is poor, but treatments, typically immunosuppressants, have 47 improved survival, albeit with considerable morbidity from glucocorticoids and other 48 immunosuppressive medications. Current challenges include improving measures of disease 49 activity and risk of relapse, uncertainty about optimal therapy duration and a need for targeted 50 therapies with fewer adverse effects. Meeting these challenges requires a more detailed 51 knowledge of the fundamental biology of AAV, and co-operative international research and 52 clinical trials with meaningful input from patients. 53

55 [H1] Introduction

The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) 56 are diseases characterized by inflammation of blood vessels, endothelial injury and tissue 57 damage. Three types of small-vessel vasculitis, namely granulomatosis with polyangiitis 58 (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis 59 (EGPA, previously known as Churg-Strauss syndrome), feature a loss of tolerance to 60 neutrophil primary granule proteins, most often leukocyte proteinase 3 (PR3; also known as 61 myeloblastin) or myeloperoxidase (MPO) (Table 1). The vessels involved in AAV are 62 typically capillaries, arterioles and venules, but small arteries and veins may also be affected. 63 Autoimmunity is documented clinically by serum ANCAs against PR3 (PR3-ANCA) or 64 MPO (MPO-ANCA), which are generally associated with the main syndromic AAV 65 presentations (Box 1). AAVs collectively represent one of several types of autoimmune 66 vasculitis (Figure 1). 67

GPA and MPA can involve small blood vessels in any organ or tissue, but commonly 68 affect the upper and lower respiratory tract and the kidneys (Box 2). Patients with AAV 69 typically present with severe organ-threatening or life-threatening disease, although less 70 severe presentations also occur. GPA is predominantly associated with PR3-ANCA, and its 71 clinical features typically include sinonasal disease, lower respiratory tract involvement with 72 pulmonary haemorrhage and granulomatous inflammation, and glomerulonephritis. MPA is 73 usually associated with MPO-ANCA, and clinical features include more severe renal disease 74 and some of the manifestations of GPA but without granulomatous inflammation. EGPA is 75 characterized by asthma, eosinophilia and, in many (but not all) cases, vasculitis. EGPA is 76 less common than GPA or MPA and, in some cases, is associated with ANCAs, mainly 77 MPO-ANCA (Table 1). Although categorized as a form of AAV, EGPA has less overlap with 78 the other AAVs than that between GPA and MPA in its genetic, pathogenetic and clinical 79 features, and management and is typically considered a separate entity. 80

81

Improvements in treatment and prognosis for patients with AAV have resulted from translation of both pre-clinical and clinical research findings. Here, we provide an updated overview of the clinical and molecular features of AAVs, present current pathophysiological concepts, discuss established and upcoming therapeutic options, emphasise the value of patient-oriented outcomes, and provide a perspective on future challenges in AAV research and treatment.

89 [H1] Epidemiology

90 [H2] Incidence and prevalence

Although fulfilling most definitions of a 'rare disease', with a historical estimated prevalence of 48–184 cases per million persons¹, rheumatologists, nephrologists, clinical immunologists and other physicians regularly encounter patients with AAV. In fact, more recent studies report rates of prevalence of between 300-421 per million persons^{2,3}, an inflation likely explained by improving survival and better case definition.

The global impacts of AAVs in terms of premature mortality⁴, quality of life (QOL)⁵ and societal economic costs⁶ are considerable. Since the introduction of commercially available ANCA assays in the mid-1990s and enhanced physician awareness, there has been a noticeable increase in apparent AAV incidence. For example, the incidence rate of GPA between 1975 and 2001 in Sweden increased from 3.3 to 11.9 cases per million persons per year⁷. The plateauing of incidence rates since then indicates that the true incidence has likely remained stable, although the lack of standardized diagnostic criteria may affect case ascertainment.

There is wide geographical variation in AAV incidence (Figure 2), which is partly 103 explained by methodological differences in study design, although specific patterns can be 104 observed. First, GPA (PR3-AAV) mainly affects countries in which the population is 105 predominantly of European ancestry and is seldom observed in East Asian countries. By 106 contrast, MPA (MPO-AAV) predominates in Asian countries, such as China and Japan^{8,9}. 107 Second, the incidence of GPA is influenced by latitude, as the incidence is lower towards the 108 equator^{10,11}. The disparity in incidence among ethnicities is further supported by studies 109 examining multi-ethnic populations. Surveys in France and USA both indicate at least a two-fold 110 higher incidence of GPA and MPA in white populations than in other ethnicities^{12,13}. A more 111 recent UK study identified a similar signal, but this was mostly explained by the older age of the 112 white population¹⁴. EGPA is strongly linked to asthma and eosinophilia in terms of both its 113 clinical features and genetic make-up, though epidemiological data pertaining to EGPA are 114 limited, as are data from Africa and South Asia for all types of AAV. It is unclear whether lack 115 of access to ANCA testing in low-income and middle-income countries is resulting in not only a 116 lack of data, but also under-diagnosis and under-treatment of AAV in these areas. 117

AAV in children is rare and less common than some other forms of vasculitis (including Kawasaki disease and IgA vasculitis). GPA seems to be more common than MPA or EGPA, and unlike adults, AAV in children is likely to be more common in females¹⁵.

121

122 [H2] Risk factors and disease determinants

There is compelling evidence implicating genetic factors in the pathogenesis of AAV, although 123 genetic predisposition alone does not explain this complex disorder. As the typical age of onset 124 ranges between middle to older age and there is an equal sex distribution in AAV prevalence, it 125 is likely that environmental factors have a key role in AAV aetiology. Some epidemiological 126 studies report a cyclical occurrence of GPA, which is consistent with an infectious trigger. 127 Although the majority of studies describe an increase in the incidence of GPA in winter¹⁶⁻¹⁹, a 128 higher summer incidence and no seasonal change have also been reported ^{20,21}. Indeed, increased 129 rates of chronic Staphylococcus aureus nasal carriage, observed among patients with GPA have 130 been associated with an increased relapse risk^{22,23}. 131

More granular epidemiological inspections of putative environmental causes are limited 132 to small exploratory studies. An association between silica exposure and MPO-AAV has been 133 consistently observed^{24,25}. The high prevalence of silica in the natural environment (for example, 134 in cement) is one proposed explanation for the apparent upsurge in AAV incidence following 135 major earthquakes in 1995 and 2011 in Japan^{26,27}. However, this correlation was not replicated 136 in the aftermath of the 2011 earthquake in Christchurch, New Zealand²⁸, a discordance that 137 potentially highlights the importance of AAV gene-environment interactions. Anecdotally, 138 clinicians commonly observe a disparity in prevalence between urban and rural areas, although 139 the epidemiological data to support this disparity are mixed²⁹. For example, in a rural region of 140 the UK, farming has been identified as a risk factor for both GPA and MPA²⁴, indirectly 141 implicating pesticide and fertilizer exposure as potential pathogenetic factors. By contrast, 142 pollution, specifically carbon monoxide levels, has been associated with increased AAV risk in 143 population-dense China³⁰. Other postulated risk factors include UV light³¹, smoking³², solvents²⁴ 144 and occupational solvent exposure²⁴, but no single environmental factor seems to confer a major 145 population-attributable risk. Similarly, specific drugs are responsible for some cases of vasculitis 146 with syndromes similar to AAV (Box 3). 147

Ultimately, many epidemiological studies have treated AAV as a single disease construct and lack the power to examine the possibility that distinct environmental associations exist across the pathogenetically distinct sub-types.

152 [H1] Mechanisms/pathophysiology

AAVs are characterized by microvascular endothelial inflammation leading to 153 extravascular inflammation, progressive injury, tissue destruction, fibrosis and loss of 154 function. GPA and MPA develop by the loss of immunological T and B cell tolerance to one 155 of two neutrophil proteins, PR3 or MPO. Mechanisms of acute injury in GPA and MPA are 156 unique to this group of disorders and are overviewed schematically in Figure 3. Specifically, 157 loss of tolerance leads to the development of ANCAs, autoantibodies that activate 158 neutrophils. ANCA-activated neutrophils localize to vulnerable microvascular beds, where 159 they induce injury and release the autoantigen for presentation by antigen-presenting cells 160 (such as dendritic cells (DCs)), allowing antigen recognition by effector T cells that mediate 161 further injury. Key elements of loss of tolerance, the generation of effector responses, and 162 mechanisms of microvascular injury are summarized in Figures 4 and 5. 163

The pathogenesis of AAVs has been explored in *in vitro* assays and *in vivo* in animal 164 models and in human studies. In animal studies, MPO-AAV is characterized by anti-MPO 165 autoreactivity affecting the kidneys³³. Although glomerular and pulmonary vessels are 166 particularly vulnerable, there is little evidence to indicate why some vascular beds are 167 preferentially involved. Furthermore, the mechanisms underpinning the frequent occurrence 168 of granulomatous inflammation in PR3-AAV and its near absence in MPO-AAV are 169 undefined. The response to injury, including the extent of tissue destruction and/or fibrosis, is 170 likely to be contingent on the characteristics of the affected tissue, and the intensity and 171 chronicity of local vasculitic inflammation. 172

173

174 *[H2] Genetics*

[H3] GPA and MPA. Evidence for a genetic contribution to the aetiology of AAVs has 175 come largely from registry studies, which revealed that the familial relative risk (RR 1.56) is 176 similar to that for rheumatoid arthritis (RR 1.5-5.0) but lower than that for other immune-177 mediated diseases³⁴. Identifying robust genetic associations with AAV is challenging due to 178 its fairly low prevalence, although candidate gene studies that utilized cohorts combining 179 patients with GPA and those with MPA, and occasionally those with EGPA, found 180 associations with the major histocompatibility complex (MHC) genes, in particular the HLA-181 DP*04:01 locus³⁵. The European Vasculitis Genetics Consortium reported the first genome-182 wide association study (GWAS) in AAV³⁶, which identified both MHC and non-MHC 183 associations with disease and demonstrated that GPA and MPA are genetically distinct. 184 Moreover, sub-analyses revealed that the strongest associations were not with the clinical 185

syndromes per se, but with ANCA specificity. The Vasculitis Clinical Research Consortium^{37,38} confirmed these associations and provided the first evidence for genetic variants, for example in *PTPN22*, that are common to both PR3-AAV and MPO-AAV, suggesting there was also a shared genetic component to these diseases. How much of the clinical similarity between the two syndromes is driven by this shared genetic architecture, rather than antigenic similarity, awaits the outcome of larger GWAS that are better powered to assess associations with PR3-AAV and MPO-AAV separately.

Although the causal variant or variants at each locus remain unresolved, these genetic 193 studies shed light on the underlying disease pathogenesis. Some variants represent genes, 194 such as *PTPN22* associated with other autoimmune diseases³⁹, and larger studies are likely to 195 identify further commonalities. Other variants are more specific to AAV. Genetic variants at 196 both SERPINA1 (encoding α1-antitrypsin) and PRTN3 (encoding PR3) independently lead to 197 increased plasma levels of PR3, suggesting that altered availability of circulating PR3 is a 198 key driver in loss of tolerance to PR3 and the subsequent development of PR3-AAV. The 199 association of HLA-DP*04:01 with PR3-AAV may simply reflect the role of HLA (MHC) in 200 presenting PR3 peptides to the immune system. However, this HLA-DP molecule also binds 201 to the natural killer (NK) cell receptor NKp44, leading to NK cell activation⁴⁰, which might 202 represent an alternative or additional mechanism that underpins the relationship between 203 HLA-DP and PR3-AAV. 204

<u>[H3] EGPA.</u> One GWAS examining EGPA has identified 11 loci associated with EGPA⁴¹
 and demonstrated that EGPA comprises two genetically distinct subtypes, MPO-ANCA⁺
 EGPA and ANCA⁻ EGPA These subtypes align with the clinical differences existing between
 these patient subsets^{42,43}. Some of the identified loci are associated with eosinophil count in
 addition to EGPA, and Mendelian randomization revealed that increased risk of eosinophilia
 underlies susceptibility to EGPA, with additional genetic or environmental factors required
 for the development of disease.

212

[H2] Environmental factors and infections

The increasing incidence of AAV in the sixth and older decades of life implies a role for age-related factors and various accumulating environmental factors (discussed above), although these factors remain ill-defined. Whereas some observational studies implicate infectious triggers in AAV pathogenesis, the precise infectious agents remain unclear. Mechanistic *in vitro* and *in vivo* animal model studies suggest several ways in which, infection might promote loss of tolerance or disease relapse in AAV. These include autoantigen exposure by the formation of neutrophil extracellular traps (NETs) that may be resistant to degradation in AAV⁴⁴, by molecular mimicry (that is, microbial antigens sharing sequence similarity with a host protein), and by the priming of neutrophils for ANCAinduced activation³³ (Figure 4). Some attention has focused on *S. aureus*, with reports of increased rates of nasal carriage in relapsing GPA patients ²² and experimental data implicating a plasmid-encoded 6-phosphogluconate dehydrogenase sequence from some *S. aureus* strains in by molecular mimicry in MPO-AAV⁴⁵.

227

228

[H2] ANCA antigens

As autoreactivity to either MPO or PR3 is central to the majority of cases of AAV, the 229 characteristics of the key autoantigens are important. In most patients with AAV there is a 230 single dominant autoantigen. MPO and PR3 are found primarily in neutrophils and are also 231 produced by monocytes and macrophages. Although PR3 and MPO are mainly synthesized 232 by immature neutrophils, altered DNA methylation and increased expression of PRTN3 and 233 MPO in mature neutrophils is implicated in disease pathogenesis⁴⁶. PR3 and MPO are not 234 only key AAV autoantigens, they also have damaging effects on the endothelium in 235 microvascular inflammation. They are released by multiple mechanisms, including by 236 degranulation and microparticle release, and as constituents of NETs⁴⁷. 237

PR3 is a 29kDa serine protease with pro- and mature forms⁴⁸, which are located 238 within azurophilic granules. The variable expression of PR3 on the surface of neutrophils is 239 in part dependent on co-expression with CD177, which binds to and colocalizes with the $\beta 2$ 240 integrin CD11b as part of the CD11b/CD18 complex^{49,50}. Cell surface PR3 expression is 241 increased in apoptotic neutrophils, which limits macrophage phagocytosis and promotes a 242 pro-inflammatory microenvironment⁴⁸. MPO is abundant in human neutrophils as a major 243 component of azurophilic granules. Mature MPO is composed of light and heavy chains as a 244 highly cationic homodimeric glycoprotein, bound to a haem group. The heavy chain is 245 extensively but variably glycosylated^{51,52}. Pro-inflammatory stimuli increase cell surface 246 MPO levels, and MPO is released in inflammatory states, where it catalyses the formation of 247 reactive intermediates, including hypohalous acids. The AAVs are typically considered 248 systemic autoimmune diseases, each with dominant autoreactivity to only a single 249 autoantigen. However other autoantigens have been associated with AAV, including 250 lysosome-associated membrane protein 2 (LAMP2)⁵³, peptides complementary to PR3 251 (cPR3)^{54,55}, moesin⁵⁶, plasminogen^{57,58}, peroxidasin⁵⁹ and pentraxin 3⁶⁰. Infection has been 252

implicated in loss of tolerance to some of these antigens. In rats, a LAMP2 epitope, found in myeloid cells and endothelial cells, and homologous to part of the bacterial adhesin FimH, induces AAV⁵³. Reactivity to cPR3, derived from the non-coding strand of PR3 cDNA, and potentially initiated after infection⁵⁴, may trigger anti-PR3 autoreactivity. While several studies support a role for LAMP2 in MPA or GPA, or cPR3 in the pathogenesis of PR3-AAV, not all reports implicate these alternative antigens in disease^{61,62}.

259

[H2] Loss of tolerance to ANCA antigens

[H3] Central and peripheral mechanisms of tolerance. Central and peripheral mechanisms 261 prevent damaging autoreactivity and autoimmune diseases by maintaining tolerance to self-262 antigens. In most autoimmune diseases, loss of T cell tolerance allows the emergence of T 263 helper (Th) cells, that are central to autoantibody production by cells of the B cell lineage, 264 and also themselves promote tissue injury. Loss of B cell tolerance allows the emergence of 265 autoreactive B cells and plasma cells that produce damaging autoantibodies. Memory T and 266 B cells that develop over time are important in chronicity and relapse. This is the case in 267 AAV (Figure 4). Loss of tolerance to neutrophil proteins occurs prior to the onset of 268 symptoms of AAV⁶³. Our understanding of this process is imprecise; whereas dysregulated 269 neutrophil apoptosis might predispose to loss of tolerance, there is no clear evidence that this 270 is essential. Defects in both central and peripheral tolerance are present in AAV. Central 271 tolerance to antigens in AAV is imperfect, as autoantigen-specific T cells and 'natural' autoantibodies are present in healthy individuals⁶⁴. In the thymus, critical for T cell tolerance, 273 MPO expression is under the control of the autoimmune regulator (AIRE) and Aire^{-/-} mice 274 exhibit stronger autoimmunity to MPO⁶⁵. However, AIRE-deficient individuals do not seem 275 to develop AAV, consistent with the existence of multiple layers of tolerance to MPO. 276 Animal studies support a role for regulatory T (T_{reg}) cells in limiting autoimmune disease⁶⁵, 277 and patients with AAV have fewer T_{reg} cells and regulatory B (B_{reg}) cells, with T_{reg} cells 278 having a diminished capacity to suppress effector responses ex vivo⁶⁶⁻⁶⁹, with T_{reg} cell 279 abnormalities linked to antigen-specific effector IL-17-producing T helper (T_H17)-like 280 cells^{67,70}. To better understand loss of tolerance, and to move toward harness tolerogenic 281 therapeutic platforms, and more precise diagnostic tools and biomarkers, immunodominant T 282 and B cell epitopes have been defined for MPO, but not for PR3⁷⁰⁻⁷³. Conformational and 283 linear B cell epitopes exist for both MPO-ANCA and PR3-ANCA74-76. An MHC-284 promiscuous CD4⁺ T cell MPO epitope overlaps with a linear B cell epitope and a CD8⁺ T 285

cell epitope⁷⁰⁻⁷³, and is nephritogenic in mice. Knowledge of these epitopes enables translational strategies to improve disease monitoring and re-establish tolerance.

288

[H3] Maintenance of autoreactive B cells. After the loss of tolerance, the survival of 289 autoreactive lymphocytes promotes ongoing and chronic disease (Figure 4). In the case of 290 AAV, B cell survival factor B cell-activating factor (BAFF) is produced by ANCA-291 stimulated neutrophils and BAFF levels are elevated in AAV^{77,78}, suggesting that interactions 292 between BAFF and its receptors on autoreactive B cells and plasmablasts promote 293 autoimmunity. After therapeutic B cell depletion, BAFF may promote relapse by promoting 294 the recovery of autoreactive B cells. B cells and B cell aggregates are present in more chronic 295 lesions, implying additional roles for antigen-specific B cells beyond antibody production, as 296 pro-inflammatory cells or as antigen-presenting cells^{79,80}. 297

298

[H2] The role of ANCA and neutrophils

300 [H3] ANCAs activate neutrophils and monocytes.

A critical consequence of loss of T and B cell tolerance is the production of ANCAs 301 that bind to and activate neutrophils, so that they adhere in vulnerable microvascular beds and 302 induce injury (Figures 3 and 5). ANCAs are usually of the IgG isotype, but IgA and IgM 303 ANCA have also been reported^{81,82}. ANCAs bind to their autoantigen, activate neutrophils 304 and initiate injury⁸³. In vitro studies support a model whereby both F(ab')₂-antigen and Fc-305 FcγR interactions are required, by G-protein-coupled pathways and SYK, respectively^{84,85}. 306 The effects of ANCAs on neutrophils include changes in adhesion molecule expression^{86,87}, 307 alterations in cytoskeletal proteins such as polymerization of F-actin⁸⁸, and the generation of 308 reactive oxygen species 89. Mediator release occurs by several mechanisms: degranulation, 309 NET formation and the release of microparticles⁹⁰. The release of cytokines, proteases and 310 other molecules induces necrotizing crescentic glomerulonephritis in mice⁹¹. A report of 311 placental MPO-ANCA transfer to a neonate with pulmonary haemorrhage and microscopic 312 haematuria supports a role for ANCAs in AAV pathogenesis⁹². The *in vivo* pathogenicity of 313 ANCA-activated neutrophils has been convincingly demonstrated in experimental MPO-314 AAV^{91,93} and evidence also exists for PR3-AAV^{94,95}. ANCA also activate monocytes *ex vivo*, 315 as monocytes express PR3 and MPO, albeit to a lesser degree than neutrophils. Compared 316 with studies in neutrophils, the pathogenic implications of any direct effects of ANCA on 317 monocytes is less certain^{96,97}. Whether the 5–10% of patients with GPA or MPA who are 318

ANCA⁻ have a relevant autoantibody is unresolved. Patients may be MPO-ANCA⁺ but their 319 ANCAs may react to an epitope that is masked in conventional assays⁷² or to other antigens, 320 including LAMP2⁹⁸ or pentraxin 3⁶⁰. There are ANCA epitopes that are derived from 321 pathogenic sequences as well as from endogenous proteins, while other factors, including 322 ANCA sialylation and glycosylation may contribute to the inconsistent relationship between 323 ANCA and disease activity^{72,99,100}. 324

[H3] Neutrophil priming and activation state. Although ANCAs may activate neutrophils 325 without additional inflammatory signals, neutrophil priming by exogenous or endogenous 326 proinflammatory signals promotes the damaging effects of these cells after ANCA-induced 327 activation (Figures 3 and 4). In addition to the functional consequences of genetic variation in 328 PRTN3 and its inhibitor SERPINA1101 and epigenetically mediated increases in PR3 and 329 MPO^{46,102}, neutrophils from AAV patients, even in remission, produce more intracellular 330 reactive oxygen species, NETs and have a greater capacity to active the alternative pathway 331 of complement (see below)^{103,104}. The precise contributions of intrinsic properties of 332 neutrophils and their response to priming events are unclear, but both are likely to be 333 relevant. Neutrophil priming in AAV occurs by several mechanisms, of which the most well 334 defined are the complement system (see below), toll-like receptors (TLRs) and cytokines 335 (including TNF and IL-18)³³. TLRs are expressed on several relevant cell types, including 336 neutrophils, monocytes and microvascular endothelial cells. Engagement of TLRs by 337 pathogen-associated molecular patterns (PAMPs) or in sterile inflammation by damage-338 associated molecular patterns (DAMPs) activates neutrophils and the endothelium¹⁰⁵⁻¹⁰⁸. 339

340

[H3] Complement activation via the alternative pathway

Complement, specifically the C5a receptor (C5aR), is a validated therapeutic target in 341 acute AAV¹⁰⁹⁻¹¹¹. Evidence implicates neutrophil cell surface C5a-C5aR interactions in 342 neutrophil priming and activation^{109,112-115}. Although paracrine and autocrine sources of C5a 343 are possible, circulating C5a may be more important¹¹⁶, and little evidence exists for a role 344 for the membrane attack complex (which comprises the complement subunits C5b, C6, C7, 345 C8 and C9)¹⁰⁹ in neutrophil priming and activation. In addition to activating neutrophils, C5a 346 enhances neutrophil retention in the microvasculature and promotes T cell antigen 347 recognition by activating dendritic cells¹¹⁵. Three different pathways (classical, lectin and 348 alternative) can be responsible for C5 activation, and in AAV evidence points to the 349 alternative pathway being the key to pathological C5a/C5aR interactions. In mice, deficiency 350 of Factor B (important to the alternative pathway), but not C4 (the classical/lectin pathway) 351 was protective in experimental anti-MPO antibody induced glomerulonephritis¹¹², while 352

Factor Bb immunostaining in glomeruli correlated with renal injury¹¹⁷. Though not prominent, complement deposition is present in some human kidneys in AAV and may also be relevant to tissue pathology¹¹⁸. Low serum C3 levels in AAV with renal involvement are associated with unfavourable outcomes^{119,120}. Other potential roles for complement in AAV include damaging relationships with pattern recognition receptors and with pro-coagulant molecules¹¹⁸.

[H3] ANCA-induced neutrophil recruitment to the microvasculature

ANCA-activated neutrophils mediate microvascular injury by adhering to 360 microvascular endothelial cells in vulnerable tissues, via integrin-endothelial adhesion 361 molecule and chemokine-chemokine receptor interactions (Figure 5). ANCA enhances 362 contact between neutrophils and activated endothelial cells via β2 integrins and C-X-C motif 363 chemokine receptor 2 (CXCR2) in flow chamber assays¹²¹. In vivo microscopy studies using 364 inflamed post-capillary venules have shown incremental recruitment of ANCA-activated 365 neutrophils, consistent with in vitro mechanisms^{122,123}. However, in the glomerulus, the 366 mechanisms of ANCA-induced neutrophil adhesion are dependent on the ANCA 367 concentration, so it is mediated by $\beta 2$ integrin at low ANCA levels, whereas $\alpha 4$ integrin 368 mediates adhesion at high ANCA levels and without additional stimuli (such as 369 lipopolysaccharide) that themselves induce glomerular leukocyte recruitment⁸⁷. 370

371

372 [H2] T cells and cellular immunity

In addition to humoral immunity, cellular immunity is important in AAV 373 pathogenesis, as CD4+ T cells promote ANCA production and CD4+ and CD8+ cells 374 recognise ANCA antigens deposited in peripheral tissues by activated neutrophils (Figures 3 375 and 5). The class-switched, high-affinity nature of IgG ANCA implies T cell help via T 376 follicular helper (T_{FH}) cells¹²⁴, the abundance of which is increased in GPA¹²⁵. CD4⁺ T 377 effector memory cell abundance is increased in the blood and urine in AAV^{126} and $CD4^+$ and 378 $CD8^+$ cells are present in lesions¹²⁷⁻¹²⁹. Both T_H1 and T_H17 effector cytokine profiles have 379 been observed in AAV^{130,131}, including T_H1 profiles in granulomatous lesions¹³². CD4⁺CD28⁻ 380 cytotoxic T cells found in the blood of patients with GPA are linked to cytomegalovirus 381 (CMV) infection, which is itself associated with poor AAV outcomes¹³³. Furthermore, 382 subclinical CMV infection and reactivation in immunosuppressed AAV patients may impair 383 immune responses to infection, as the antiviral drug valacyclovir improved vaccine responses 384 in CMV seropositive AAV patients¹³⁴. 385

Analyses of CD8⁺ T cell transcriptomes of patients with active AAV at diagnosis reveal that patients can be stratified into two groups correlating with differences in long-term outcomes¹³⁵. CD8⁺ and CD4⁺ T cell transcriptome data shows that reduced expression of genes linked to T cell exhaustion correlates with relapsing disease¹³⁶. The correlation between exhaustion, with progressive loss of T effector function, and favourable disease outcome extends across a range of autoimmune and autoinflammatory diseases¹³⁶ and implies that therapeutics targeting this process may improve the management of AAV.

Effector T cells participate in tissue injury in AAV. When ANCA-activated neutrophils localize to inflamed tissues, they release their autoantigen^{129,137}. The widespread deposition of the autoantigens in AAV in inflamed tissues makes these antigens available for recognition by effector T cells. Experimental studies, largely in experimental anti-MPO glomerulonephritis demonstrate a role for MPO-specific cells of both T_H17 (earlier) and T_H1 type (later)¹³⁸, while CD8⁺ T cells also cause experimental injury⁷³.

399

400 [H2] Monocytes and macrophages

Macrophages are prominent in AAV lesions, are the most abundant cell type in glomeruli ^{128,129}, and are important in both acute and chronic injury (Figure 5). ANCAs bind to intermediate monocytes that release pro-inflammatory cytokines and chemokines^{96,97}, while experimentally, inflammatory monocytes participate in glomerular crescent formation¹³⁹. Macrophages are activated by effector T_{H1} and T_{H17} cells at sites of injury, participate in granuloma formation, form macrophage extra cellular traps in tissues¹²⁹ and in chronic inflammation profibrotic macrophages contribute to disease progression and damage.

408

409 [H2] The pathogenesis of EGPA

The pathogenesis of EGPA is not well understood. It is likely to be substantially different 410 to both GPA and MPA, but the extent of the similarities and differences is unclear. Furthermore, 411 the clinical presentations, genetic associations and the response to therapies between ANCA⁺ 412 and ANCA⁻ EGPA patients imply distinct elements to the pathogenesis of these forms of 413 EGPA⁴¹⁻⁴³. Genetic associations with genes that influence eosinophil numbers and those that 414 underlie asthma are common to both ANCA⁻ and ANCA⁺ patients. However, in ANCA⁻ EGPA 415 patients, the association with genes affecting barrier function (including GPA33) implies a role 416 for mucosal dysfunction, whereas in ANCA⁺ EGPA patients, the HLA associations are 417 consistent with ANCA⁺ EGPA being an eosinophilic autoimmune disease. 418

In addition to genetic studies, observational studies implicate eosinophil dysfunction in 419 the pathogenesis of EGPA. Eosinophil mediated injury via the release of granule proteins itself 420 can induce tissue resident cells to release pro-inflammatory mediators. Some of these tissue cell 421 derived molecules, such as IL-25, affect both adaptive (type 2 T helper, T_H2 cell) and innate 422 (group 2 innate lymphoid cells, ILC2) lymphoid cells¹⁴⁰. Both Th2 and ILC2 cells produce IL-5 423 and IL-13 key cytokines that promote eosinophil proliferation and function^{141,142}. IL-5's role has 424 been validated by trials of mepolizumab, an anti-IL-5 monoclonal antibody in EGPA $^{143}\!\!\!\!$. $T_{\rm H}2$ 425 cell-associated chemokines, such as CC-chemokine ligand 26 (CCL26; also known as eotaxin 426 3), enhance eosinophil recruitment¹⁴². Other T cell-associated cytokines are also elevated in 427 patients with EGPA, but thus far there is no clear evidence that a particular pattern of cytokine 428 or chemokine production characterizes ANCA⁺ or ANCA⁻ EGPA. A direct relationship between 429 MPO-ANCA and eosinophils has not yet been demonstrated in ANCA⁺ patients with EGPA. 430

431

432 H2 Chronicity and relapse in AAV

The pathogenesis of AAV is characterized by complex pathways to tissue injury and damage involving both humoral and cellular effector systems. Much of the work on the pathogenesis of AAV has been in systems modelling acute injury. Although largely unexplored, mechanisms operative in disease induction are also likely to be relevant to relapse. Some observational evidence points towards infection, in part related to chronic sinonasal mucosal damage, being important in relapse, and determinants of T cell activity and exhaustion may also be able to identify those at high risk of relapse.

[H1] Diagnosis, screening and prevention

442 [H2] Diagnostic and classification criteria

Clear definitions of GPA, MPA, EGPA and other systemic vasculitides are provided by 443 the updated 2012 Chapel Hill Consensus Conference (CHCC)¹⁴⁴ which, as the name implies, 444 was consensus driven and not data driven (Figure 1, Table 1). In 2006, an algorithm was 445 developed for applying the 1990 American College of Rheumatology (ACR) classification, 1993 446 CHCC definitions and ANCA specificity to streamline classification of patients with GPA, MPA 447 and EGPA for epidemiological studies and clinical trial purposes, but cannot be regarded as 448 providing diagnostic criteria for clinical practice¹⁴⁵. The current Diagnostic and Classification 449 Criteria for Vasculitis (DCVAS) study further develops classification and diagnostic criteria in 450 AAV^{146} 451

452

453 [H2] Clinical presentation

The different types of AAV share non-specific clinical features of systemic 454 inflammation, such as weight loss, malaise, fatigue, arthralgia and myalgia relating to the 455 systemic autoimmune pathophysiology (Box 2, Figure 6). These are frequently misinterpreted 456 as infections, malignancies, depression or osteoarthritis, especially in older patients¹⁴⁷. This is 457 pertinent as some conditions such as infective endocarditis not only share clinical features 458 with AAV but may also have a positive ANCA test by indirect immunofluorescence (see Box 459 1). Although asthma is a typical early feature of EGPA, all forms of AAV can present with 460 manifestations relating to small vessel vasculitic lesions and dysfunction of any organ¹⁴⁸. A 461 variety of organ systems and tissues are affected in AAV, albeit at different frequencies in 462 GPA, MPA and EGPA (Figure 6). 463

Necrotizing or granulomatous lesions can affect the ears, nose and throat (ENT) tract, 464 and cause symptoms of chronic rhinitis, sinusitis or laryngitis. Similar processes in the 465 respiratory tract, also including pulmonary capillaritis, present with shortness of breath, 466 cough, and haemoptysis due to pulmonary haemorrhage (Figure 6). Cavitating lung nodules 467 can be present. Ophthalmological manifestations include granulomatous orbital or retroorbital 468 masses, anterior segment inflammation, retinal vasculitis or optic neuritis. A purpural or 469 petechial rash is most common, with necrotizing dermal vasculitis and other non-vasculitic 470 skin rashes also occurring. Kidney involvement usually presents as rapid-progressive 471 glomerulonephritis with haematuria, proteinuria and hypertension. Interstitial nephritis 472 without glomerular involvement occurs but is not common. The peripheral nervous system is 473 typically affected by mononeuritis multiplex, due to focal vasculitis of the vasa nervorum. 474

EGPA is characterised by the near-universal presence of asthma, often for years prior 475 to the onset of eosinophilia and eosinophilic tissue inflammation, and difficult to control 476 asthma not infrequently persists even after treatment of EGPA. A subset of EGPA patients do 477 exhibit frank vasculitis. EGPA affected tissues are similar to those affected to GPA and 478 MPA, at different frequencies (Figure 6). In particular, cardiomyopathy due to eosinophilic 479 myocarditis is not uncommon in EGPA and can be life-threatening. Some of the differences 480 in the manifestations of EGPA and MPA/GPA, for example urticaria and eosinophilic 481 pneumonia, align with its characteristic eosinophil-dominated inflammation. 482

Some patients present with GPA or MPA limited to a single organ, such as the 483 kidneys, ENT tract or lungs, which may represent the early stages of AAV. However, in 484 MPO-ANCA⁺ patients isolated renal disease or isolated pulmonary fibrosis is not infrequent. 485 The recognition of MPO-ANCA⁺ pulmonary fibrosis, that many be the sole manifestation of 486 disease, as a feature of AAV has been of some interest¹⁴⁹. It may be more common in 487 Japan^{150,151}, though it occurs in diverse geographical locations. MPO-ANCA associated 488 pulmonary fibrosis may result from chronic low-grade pulmonary inflammation, but this is 489 not clear. A minority of MPO-ANCA⁺ patients with MPA also have anti-glomerular 490 basement membrane antibodies and exhibit a hybrid disease phenotype¹⁵², whereas people 491 with systemic lupus erythematosus or systemic sclerosis can be MPO-ANCA⁺ and develop 492 some features of AAV, especially the vasculitic pattern of glomerulonephritis¹⁵³⁻¹⁵⁵. As initial 493 clinical presentations are diverse and often nonspecific, AAV is an infrequent but important 494 differential diagnosis for many conditions across many medical disciplines. AAV can remain 495 undiagnosed for months or years until ANCA testing is performed. In view of the rarity of 496 AAV and the existence of mimics of vasculitis, the diagnosis should be reviewed 497 periodically, particularly in cases of inadequate response to treatment or if not all disease 498 manifestations are consistent with AAV. 499

Children with AAV can develop a similar range of clinical features to adults. 500 Constitutional, ENT, renal and pulmonary manifestations are most commonly found at 501 presentation¹⁵. However, some features may be more common in children. A French 502 Vasculitis Study Group Registry based case control study, with most children having GPA, 503 found that children were more likely to have fever at onset than adults¹⁵⁶. Rates of renal 504 involvement were similar, but myalgia and peripheral neuropathy were less common. 505 Children were more likely to relapse than adults and more frequently accrued damage, 506 especially ENT damage, over time^{15,156}. 507

509 [H2] Clinical syndromes and antigenic specificity

MPA and GPA are strongly associated with MPO-ANCA and PR3-ANCA, respectively, 510 whereas EGPA can be either ANCA⁺ (mostly MPO-ANCA) or ANCA⁻ (Table 1). Global 511 variations in clinical manifestations reflect the relative rates of MPA (MPO-AAV) and GPA 512 (PR3-AAV) discussed in Epidemiology (above), with for example, clinical features associated 513 with MPA being more common in East Asia. Given the presence of overlapping signs and 514 symptoms but also clear clinical differences (described in Table 1 and Box 2), another approach 515 to disease classification is by the autoantigen involved (that is, PR3-AAV and MPO-AAV), 516 although this approach also has limitations: ANCA can be negative, MPO-ANCA can be false 517 positive in patients without vasculitis¹⁵⁷, assay standardization is lacking, and not all countries 518 have ready access to high quality assays. Nonetheless, genetic and other studies demonstrate that 519 the clinical differences between PR3-AAV and MPO-AAV are greater than those between GPA 520 and MPA^{36,158}, indicating that from a pathogenetic perspective, antigen specificity is important. 521 Furthermore, post hoc analyses of a large multicentre study suggest that PR3-ANCA⁺ patients 522 may respond better to the biologic rituximab than to the immunosuppressants cyclophosphamide 523 and azathioprine, whereas these treatments seem to be equally effective in MPO-ANCA⁺ 524 patients¹⁵⁹. ANCA specificity also predicts differences in long-term prognosis: PR3-ANCA⁺ 525 patients are at higher risk of relapse than MPO-ANCA⁺ patients¹⁶⁰. In EGPA, the presence or 526 absence of ANCA in patients defines its two subtypes. Most patients with EGPA are ANCA-, 527 but approximately 40% are (or have been) ANCA positive, almost always MPO-ANCA. 528 Clinically, renal involvement and peripheral nerve involvement are more common in ANCA⁺ 529 patients, with cardiomyopathy and possibly pulmonary infiltrates being more common in those 530 who are ANCA^{-42,43}. 531

532

533 [H2] Biomarkers

ANCAs are unique markers that support the classification and diagnosis of GPA, MPA 534 and EGPA. The indirect immunofluorescence test has been the initial screening test for ANCA, 535 but high-quality immunoassays are preferred¹⁶¹ (Box 1). The ANCA test is useful in monitoring: 536 patients with persistently elevated ANCA, a reappearance of ANCA or an increase in ANCA 537 level have an increased likelihood of relapse, though restarting or intensifying therapy based on 538 ANCA alone is not recommended. This aligns with an association between earlier relapse and a 539 higher frequency of memory B cells¹⁶², while a higher plasmablast percentage during remission 540 is also predictive of relapse¹⁶³. The acute-phase markers C-reactive protein and erythrocyte 541 sedimentation rate are of limited use in evaluating disease activity due to their lack of 542

543

544 545

546

[H2] Assessment of disease activity and chronic damage

Patients with AAV should have access to medical specialists with expertise in the 547 complex care of vasculitis, ideally in a multidisciplinary context. Where needed, early referral to 548 specialists experienced in assessing specific organ systems involved in AAV improves the 549 quality of disease assessment. Managing patients at, or in collaboration with a dedicated 550 vasculitis center provides opportunities to participate in clinical trials. Disease assessments in 551 AAV should target activity, damage, prognosis and function or QOL¹⁶⁷, Validated tools to assess 552 disease activity include the Birmingham Vasculitis Activity Score (BVAS) and the Five Factor 553 Score (FFS). The BVAS comprises ten systems (one general, eight organ-specific and one open) 554 and is used in clinical research to assess disease activity, remission, response to therapy and 555 flare¹⁶⁸. Only items that are newly present or worsening over the preceding four weeks are 556 recorded. Disease states of active disease, remission, and refractory disease are defined as 557 follows: a BVAS score of 0 represents remission, ≥ 1 represents active disease, and refractory 558 disease is active disease despite treatment. Consensus definitions have been recommended by 559 the European League Against Rheumatism (EULAR) for disease activity states, including 560 remission, response, refractory disease and relapse which can be useful for clinical trials and 561 studies¹⁶⁹. The 1996 FFS is based on serum creatinine, proteinuria, cardiomyopathy, 562 gastrointestinal involvement, and central nervous system involvement, and has been validated 563 for MPA and EGPA but not GPA. The revised 2009 FFS includes serum creatinine, age (>65 564 years), cardiomyopathy, gastrointestinal involvement and absence of ENT manifestations (GPA 565 and EGPA only) but this version requires validation¹⁷⁰. To assess chronic damage, both from the 566 disease itself and from treatments such as glucocorticoids, the Vasculitis Damage Index (VDI) 567 predicts mortality risk and scores 10 systems, namely musculoskeletal, skin and mucous 568 ocular, ENT, pulmonary, cardiovascular, membranes, the peripheral vasculature, 569 gastrointestinal, renal and neuropsychiatric systems, with an eleventh category for other 570 systems¹⁷¹. 571

specificity. Other disease activity biomarkers, including urinary soluble CD163, are under

evaluation for use in assessing disease activity but await validation for routine clinical use¹⁶⁴⁻¹⁶⁶.

The BVAS and VDI are approved by the Outcomes Measures in Rheumatology (OMERACT) group and EULAR as key outcome measures to record disease activity and damage, respectively, in clinical trials¹⁷². Measures of QOL are important in the assessment of AAV. Generic tools have thus far been used but AAV-specific instruments have been developed (see QOL section, below). 577

578

[H2] Association with cardiovascular events

An increased risk of a cardiovascular events has been documented in AAV patients¹⁷³. Indeed, during 5-years of follow up of four European Vasculitis Study Group trials of GPA and MPA, 14% of patients suffered a cardiovascular event defined as cardiovascular death, stroke, myocardial infarction, coronary artery bypass graft, or percutaneous coronary intervention. PR3-ANCA was associated with a reduced cardiovascular risk compared to MPO-ANCA or negative ANCA status¹⁷⁴.

⁵⁸⁵ Dysfunction of the immune and coagulation systems contribute to an increased risk of ⁵⁸⁶ venous thromboembolism¹⁷⁵, especially during active disease¹⁷⁶. An increased incidence of ⁵⁸⁷ venous thromboembolism, in both typical and atypical sites, and pulmonary embolism has also ⁵⁸⁸ been reported in GPA, MPA and EGPA¹⁷⁷.

589

590

[H2] Role of imaging and biopsy

A chest X-ray helps dissect the underlying pathology in patients with pulmonary 591 symptoms (Figure 6), although CT has a higher sensitivity in detecting pulmonary nodules, 592 cavities and alveolar opacities, as well as masses in the retro-orbital space, paranasal sinuses and 593 the mastoids¹⁷⁸. Iodinated contrast agents are not required for these studies. High-resolution 594 chest CT (HRCT) may be helpful for detecting interstitial pneumonia; a study of HRCT 595 involving Japanese patients with MPA, all but three of whom had MPO-ANCA, demonstrated 596 abnormalities in 93%, with 51% having interstitial pneumonia¹⁵¹. While dynamic expiratory CT 597 and other modalities have been advocated as potentially useful in detecting subglottic stenosis or 598 endobronchial disease¹⁷⁹, advanced imaging techniques may not be widely available or may only 599 available as research tools. 600

The high diagnostic specificity for AAV of a positive ELISA test for MPO-ANCA or 601 PR3-ANCA, may in the appropriate clinical setting, preclude the need for biopsies. However, 602 renal, lung, skin or other tissue biopsy is often important in establishing the diagnosis and may, 603 especially in the case of nasal biopsy, provide the first evidence for AAV, particularly GPA. In 604 the appropriate clinical context, granulomatous rhinitis or pneumonitis, and 'pauci-immune' 605 glomerulonephritis are more specific for AAV than dermal leukocytoclastic vasculitis. 606 Ultrasound-guided percutaneous kidney biopsy, while not mandatory, in the presence of 607 haematuria and/or proteinuria can help make an initial diagnosis of AAV. Kidney biopsy can 608 also diagnose relapse, establish the degree of chronicity of nephritis, and in chronic disease may 609 be useful in determining whether impaired kidney function and proteinuria is related to active 610

vasculitis or irreversible damage. Biopsy samples from patients with suspected AAV should be
 assessed by an experienced pathologist.

613

614 [H2] Pathology

615

Although sharing many features, the different forms of AAV show histopathological 616 differences (Figure 7). Fibrinoid necrosis and inflammation of small vessels, sometimes 617 accompanied by thrombosis, is the hallmark of acute injury in all forms of AAV¹⁸⁰. In MPA. 618 these features are present without other defining features, such as the granulomas in GPA or the 619 prominent eosinophilic infiltrates in EGPA. Chronic lesions are characterized by transmural 620 scarring with loss of the elastic internal lamina. Larger blood vessels can be affected, with 621 leukocytic infiltrates and fibrinoid necrosis, as seen in polyarteritis nodosa. However, the 622 involvement of larger vessels should not be interpreted as an 'overlap' with other forms of 623 vasculitis when small vessel (capillary and arterioles) involvement is also present. While the 624 histopathology of EGPA features necrotizing small-vessel vasculitis (as in GPA and MPA), an 625 abundance of eosinophils is its defining feature. In the early stages of disease, eosinophilic 626 infiltrates (but no necrosis) are present in tissues or in blood vessel walls, whereas in later stages 627 of disease, eosinophils also surround the epithelioid cells within granulomas, and necrosis is 628 present. 629

630

[H3] Renal involvement. In the kidneys, the characteristic lesion in AAV is segmental necrosis 631 of glomerular capillary loops, with little or no deposition of immunoglobulin or complement, 632 termed 'pauci-immune' focal necrotizing (and crescentic) glomerulonephritis. Different lesions 633 in different glomeruli within the same biopsy specimen reveal the asynchronous nature of the 634 vasculitic injury. Acute glomerular injury is characterized by segmental necrosis with 635 extravasation of fibrin and erythrocytes into the urinary space, followed by proliferation of 636 parietal glomerular epithelial cells forming a cellular crescent. Destruction of Bowman's 637 capsule, the basement membrane surrounding the glomerulus, results from glomerular and 638 periglomerular inflammation. These inflammatory changes lead ultimately to glomerulosclerosis 639 that can be either segmental or global and represent the evolution of injury over days to months. 640

Glomerular lesions are used to stage renal disease in AAV by a histopathological classification¹⁸¹, where the dominant lesion is linked to outcomes. There are four patterns of injury, namely sclerotic (\geq 50% globally sclerosed glomeruli, worst outcome), focal (\geq 50% normal glomeruli, best outcome), crescentic (\geq 50% cellular crescents, intermediate outcome) and mixed (no single dominant type of lesion, outcome better than the sclerotic but worse than
the crescentic class). In clinical settings, this classification has been validated by some but not all
studies, especially with regard to prognosis in the crescentic and mixed classes¹⁸². The
classification does not currently include the extent of tubulointerstitial lesions or renal function.
A further classification system has been proposed that includes these factors, together with the
proportion of normal glomeruli at biopsy¹⁸³.

Glomerular injury is often accompanied by inflammation of small arteries and a variable interstitial infiltrate around necrotic lesions, either glomeruli or blood vessels, in a granulomalike pattern, but multinucleated giant cells are rarely seen. The presence of sarcoid type granulomas in renal biopsies should lead to consideration of other diagnoses, such as renal sarcoidosis or an allergic drug reaction.

[H3] Respiratory tract involvement. In GPA, upper and lower respiratory tract injury 656 classically involves granulomatous inflammation. Small granulomas are composed of sometimes 657 loose aggregates of epitheloid cells. The granulomatous inflammation often shows central 658 necrosis containing nuclear fragments of granulocytes, is surrounded by a palisade of epithelioid 659 cells and, in EGPA, by large numbers of eosinophils. Granulomatous inflammation and areas of 660 necrosis are often confluent, with a 'geographic' appearance at low magnification. 661 Multinucleated giant cells are almost invariably present and are pathognomonic for GPA or 662 EGPA when seen in isolation in lung or upper airway biopsy samples, cytology specimens from 663 bronchoalveolar lavage or nasal swabs taken when clinical features suggestive of AAV are 664 present. 665

666

In the lungs, neutrophilic capillaritis is common to all forms of AAV. As vasculitic 667 changes can be difficult to detect in small biopsy samples, samples should also be stained with 668 trichrome and Elastica van Gieson for optimal detection of any disruption to alveolar or vessel 669 walls, small areas of necrosis in arterioles and arteries, vascular inflammation, and characteristic 670 scars affecting the full thickness of the vessel wall, which indicate past injury. Acute injury may 671 consist of only non-specific inflammation or features resembling bronchiolitis obliterans and 672 organizing pneumonia. However, signs of recurrent alveolar haemorrhage with extravasation of 673 erythrocytes, variable numbers of siderophages or small areas of fibrin, necrosis or micro-674 abscesses are suggestive of AAV. In the nose, necrotizing granulomatous inflammation in GPA 675 can cause severe soft tissue destruction, including of the nasal cartilage. Large ulcers with 676 denuded epithelium can be seen. Granulomatous inflammation is also a feature of nasal 677

involvement in EGPA, sometimes with eosinophilic necrosis but more often containing
 epithelioid cell aggregates surrounded by a dense eosinophil infiltrate.

[H3] Other organ and tissue involvement. Similar vasculitic changes are found in other tissues, such as the heart, brain or gastrointestinal tract. In the gut, the finding of otherwise unexplained necrosis or haemorrhagic infarction should prompt extensive examination of mesenteric vessels for vasculitis. Although most often seen in isolation, dermal leukocytoclastic vasculitis can represent systemic disease. Involvement of the peripheral nervous system as mononeuritis or mononeuritis multiplex is due to ischaemia caused by vasculitic inflammation of the vasa nervorum¹⁸⁴.

687

688 [H2] Prognosis

The 5-year survival rates for AAV have been steadily rising to around 70-80% over the 689 past 40-50 years, following the introduction of immunosuppressant therapies, increasing know-690 how in the their use, and the introduction of ANCA testing, which are promoting earlier 691 diagnosis and improvements in supportive care¹⁸⁵. Data also suggest that there are ongoing 692 improvements in mortality and end-stage kidney disease rates over the past decades in the 693 USA^{186,187}. Globally, AAV mortality rates, based on World Health Organisation International 694 Classification of Diseases, 10th Revision (ICD-10) data are falling¹⁸⁸. These data, though 695 imperfect include mortality rates from many countries, and suggest similar age-standardised 696 mortality rates in North America and Europe, with lower rates in Latin America and higher rates 697 in Oceania. Data from Asia and Africa were limited. 698

Initial clinical factors influencing outcomes include older age, severity of renal 699 dysfunction, the presence of pulmonary haemorrhage (in some series), and disease activity 700 measured by BVAS¹⁸⁵; the findings on renal biopsy reflect severity of renal dysfunction and 701 correlate with outcomes¹⁸¹. The 2009 FFS can also be applied to prognosis, since four factors are 702 associated with a poor prognosis (age, renal insufficiency, cardiac involvement, and 703 gastrointestinal manifestations, where each is accorded +1 point); the fifth factor, ENT 704 manifestations, is associated with a better outcome and the absence of ENT symptoms scores +1 705 point¹⁷⁰. Ongoing factors influencing survival include infectious burden, development of first 706 relapse within one year and the amount of chronic damage measured by the vasculitis damage 707 index (VDI)¹⁷⁴. As the VDI encompasses both disease and treatment-related damage, the risks of 708 immunosuppressant drugs and glucocorticoids will also have an impact. Finally, other factors 709 seem to influence the likelihood of relapse, currently quoted as ~50% by five years after 710

- diagnosis; these include a diagnosis of GPA, presence of PR3-ANCA and upper or lower
- respiratory involvement¹⁸⁹.

714 [H1] Management

Following diagnosis, disease assessment in AAV should consider activity and 715 damage, for which assessment tools are available (see Assessment of disease activity and 716 chronic damage section above), prognosis (see above), and function or QOL (described 717 below). Broadly speaking, therapy can be divided into a phase aiming to induce remission 718 with more intense therapy and a subsequent period where the goal is to maintain remission 719 (Figure 8; clinical trials in GPA and MPA are summarized in Table 2). The goal of induction 720 therapy is to achieve remission by 3 months that is sustained. Later remission, early relapsing 721 or refractory disease is associated with worse outcomes¹⁹⁰. 722

Treatment should be initiated as soon as a diagnosis of AAV is at least probable and appropriate safety investigations have been performed, as delays in diagnosis and treatment lead to worse outcomes. Initiation of treatment, especially in the setting of severe renal or lung disease, should not be delayed obtaining a biopsy, as several days of treatment usually does not markedly reduce the diagnostic yield of a biopsy.

728

729

[H2] Remission induction

Prior to initiation of therapy there should be an assessment of any coexisting infection and any risk of infection, including screening for chronic viral infections, immunodeficiency, and for the risks of glucocorticoids, such as diabetes mellitus, osteoporosis, and psychiatric disorders.

[H3] Glucocorticoids. Oral glucocorticoids (such as prednisone, prednisolone and others) are 734 commenced when a diagnosis of AAV seems probable. These drugs exert a rapid effect. The 735 initial dose for severe disease is 1 mg/kg daily of prednisone (or equivalent). The PEXIVAS 736 trial demonstrated that a regimen that rapidly reduces the dose to 20 mg daily by 7 weeks and 737 5 mg daily by 19 weeks is as effective and safer than more traditional, higher-dose 738 regimens¹⁹¹. Glucocorticoids are the major modifiable cause of adverse events during the 739 induction period and lower-dose regimens reduce severe infection rates. There is no 740 consensus for glucocorticoid dosing in non-severe disease and lower initial doses may be 741 used. The RITAZAREM trial demonstrated that patients with relapsing disease respond well 742 to lower initial doses, such as 0.5 mg/kg/day, whether or not they had severe disease¹⁹². 743 Intravenous pulse methylprednisolone (total dose 1-3 g) at the initiation of therapy for severe 744 disease is conventionally administered, but its benefits and harms have not been adequately 745 studied. 746

[H3] Other immunosuppressive or immunomodulating drugs. The combination of 747 glucocorticoids with either cyclophosphamide or rituximab is the current standard of care for 748 induction of remission for severe disease, although as further evidence supporting the 749 efficacy of rituximab emerges, it is becoming the preferred induction agent for many patient 750 subgroups, such as children and adults for whom the preservation of fertility is important, 751 PR3-ANCA⁺ patients and in relapsing disease. However, rituximab is more expensive and 752 globally is not as available as cyclophosphamide. Cyclophosphamide dosing is either by 753 intermittent intravenous pulse treatments or by a daily oral dose. Doses are reduced for 754 increasing age and renal impairment; either regimen is usually discontinued after 3-6 months, 755 with subsequent initiation of therapy to maintain remission. Close monitoring is essential to 756 minimize the risk of myelotoxicity. Intravenous regimens deliver ~50% of the cumulative 757 dose compared to daily oral, with similar remission rates, but lower cyclophosphamide 758 exposure is associated with a higher subsequent relapse risk^{193,194}. 759

In two randomized trials, rituximab was non-inferior to cyclophosphamide for 760 induction of remission and, in a post-hoc analysis of the RAVE trial, superior for patients 761 with PR3-ANCA⁺ or relapsing disease^{159,195,196}. These trials used 375 mg/m², weekly for four 762 doses, although two 1,000 mg doses (two-week interval) is also widely used. There is a 763 paucity of comparative data on the use of either cyclophosphamide or rituximab in patients 764 with low GFR (for example, <20 ml/min), with a lower dose of cyclophosphamide together 765 with rituximab being used in the RITUXVAS trial¹⁹⁷. The use of this combination is 766 controversial and may confer an additional risk of infection¹⁹⁸. 767

For non-severe disease, alternative immunosuppressive agents to cyclophosphamide, 768 such as methotrexate and mycophenolate mofetil, are equivalent to cyclophosphamide in 769 terms of remission rates at 6 months but have higher subsequent rates of relapse and greater 770 accrual of damage, especially for PR3-ANCA disease. Methotrexate has been recommended 771 for patients with no threat of organ-damaging disease, although longer term outcomes (such 772 as relapse and damage accrual) are worse than with cyclophosphamide¹⁹⁹. Such patients are 773 uncommon and often require later use of cyclophosphamide or rituximab for control of more 774 severe or relapsing disease. The MYCYC trial found similar responses for MPO-ANCA⁺ 775 patients between mycophenolate mofetil and cyclophosphamide, at both 6 and 18 months²⁰⁰, 776 and two other small randomized trials support a role for this agent as an alternative for this 777 subgroup. 778

[H3] Adjunctive therapy. Although smaller studies demonstrate that use of plasma
 exchange is associated with reduced risk of end-stage kidney disease for patients with a

⁷⁸¹ serum creatinine >500 μ mol/l at diagnosis²⁰¹, the results of the large PEXIVAS trial indicate ⁷⁸² that plasma exchange should not be routinely recommended for GPA or MPA with nephritis ⁷⁸³ or lung haemorrhage¹⁹¹. Whether specific subgroups, such as those that are oliguric at ⁷⁸⁴ presentation or with hypoxic respiratory failure, benefit from plasma exchange requires ⁷⁸⁵ further study. In one study, high-dose intravenous immunoglobulin (2 g/kg total dose) ⁷⁸⁶ improved disease control of AAV refractory to usual therapy²⁰² and can be considered when ⁷⁸⁷ conventional agents are contraindicated, such as in the setting of severe infection.

788

789 [H2] Therapy to maintain remission

The goals of maintenance therapy are to prevent relapse, to minimize the risk of comorbidities and drug toxicity, and to manage the consequences of organ damage, such as chronic kidney disease. Many patients with AAV require prolonged low-dose glucocorticoids (prednisone ≤ 10 mg daily) to maintain remission, even if also treated with rituximab or an oral immunosuppressive drug.

In the MAINRITSAN and RITAZAREM trials of interval treatment, rituximab was 795 superior to azathioprine^{192,203}. These findings are consistent with previous observational data 796 and are driving a revision of guidelines. Azathioprine, methotrexate or mycophenolate 797 mofetil, with or without oral glucocorticoids, can be used after cyclophosphamide to maintain 798 remission in AAV. The optimal duration for treatment with these agents is uncertain, with the 799 REMAIN trial supporting 3-4 years of treatment regardless of ANCA subtype or 800 positivity²⁰⁴. The MAINRITSAN trial results indicate that following use of 801 cyclophosphamide in patients with new-onset disease, a reduction in relapse rates occurs with 802 use of rituximab (500 mg every six months over 2 years) compared with azathioprine. 803 MAINRITSAN3 showed that following the initial two years of treatment, a further two years 804 of rituximab treatment also reduced relapse rates²⁰⁵. The RITAZAREM trial confirmed and 805 extended these observations in a cohort of patients with relapsing disease in whom remission 806 was re-induced with rituximab and glucocorticoids, with maintenance rituximab at 1000 mg 807 every four months over two years^{192,206}. Both the MAINRITSAN trial results and 808 observational data point to an increase in relapse risk after rituximab withdrawal, compared 809 with continuing treatment, with a mean time to flare of two years after the last rituximab 810 dose²⁰⁷. 811

There remains widespread use of oral immunosuppressive drugs after induction of remission with cyclophosphamide, at least until first relapse. The use of either CD19 counts

or serum ANCA levels to guide redosing of rituximab is controversial; a randomized trial 814 comparing fixed-interval to biomarker-based dosing showed similar efficacy of these dosing 815 regimens and reduced frequency of redosing, but more relapse when based on biomarkers²⁰⁸. 816

Several factors have been shown to alter the risk of relapse in AAV, including disease 817 phenotype (GPA relapses more than MPA), ANCA subtype (patients with PR3-ANCA 818 relapse more than patients with MPO-ANCA), a history of previous relapses, the presence of 819 ENT disease, and the absence of severe renal disease²⁰⁷. Following induction therapy, 820 persisting or the return of ANCA positivity, S. aureus infection, and lower cyclophosphamide 821 exposure are linked to increased risk of relapse, but confirmation of these findings and testing 822 in a clinical trial setting are needed prior to routine application to practice. As withdrawal of 823 therapy appears to increase risk of relapse, patient-level factors to consider around drug 824 withdrawal are the likely consequences of relapse (for example, end-stage kidney disease in a 825 patient with chronic kidney disease), adherence to monitoring, access to expert advice, and 826 patients' views on the risks of relapse and ongoing drug exposure. 827

828

[H2] Treatment of relapses of GPA and MPA 829

Continued regular monitoring of patients with AAV after induction of remission 830 enables early detection of relapses with less advanced symptomatology than at presentation 831 and reduced delay. When a patient is considered to be having a relapse, a review of the 832 primary diagnosis and vasculitis mimics such as infection, malignancy or recreational drug 833 use, should be excluded. Non-adherence to prescribed medications is also often a concern. 834 One-third of relapses are severe with consequences for renal and patient survival. Treatment 835 of relapse follows the same principles as for initial therapy, but rituximab is preferred in view 836 of superior responses in the RAVE trial in relapsing patients and the beneficial effects seen in 837 the RITAZAREM trial^{192,195,196}. 838

839 840

[H2] Treatment of refractory disease

Refractory disease in AAV has been defined as a failure to achieve full control of the 841 vasculitis-related disease activity by six months, progressive disease within the first three 842 months or relapse despite adequate ongoing therapy for maintenance of remission. It is 843 important to differentiate true 'failure' of a medication from non-adherence, disease damage 844 or mimics of vasculitis. This is most relevant in respiratory tract disease in which 845 comprehensive assessment and treatment of any infection should accompany the evaluation 846 of the vasculitis. An increase in glucocorticoid dose, such as use of intravenous 847

methylprednisolone, is used in severe disease relapse but prolonged use of high-dose oral glucocorticoids should be avoided due to the associated risks. Switching from cyclophosphamide to rituximab can be considered. Adjunctive therapies to consider are plasma exchange or intravenous immunoglobin (discussed above).

852

853 [H2] Treatment of EGPA

The approach to patients with EGPA with severe disease is similar to that in GPA and 854 MPA (Table 3). Treatment strategies for EGPA vary according to disease manifestations and 855 severity, and concomitant manifestations of asthma should be managed assertively. The Five 856 Factor Score is used to stratify people with EGPA, and the presence of substantial renal 857 involvement (severe proteinuria or impaired kidney function), cardiomyopathy, 858 gastrointestinal involvement, or central nervous system involvement indicates a need for 859 more intensive treatment, such as a cyclophosphamide and glucocorticoid regimen analogous 860 to that used in GPA and MPA. Although one trial failed to demonstrate a benefit of oral 861 immunosuppressive drugs in non-severe disease²⁰⁹, these agents are widely used in an 862 attempt to reduce the high glucocorticoid requirement typical for this disease. The anti-IL-5 863 monoclonal antibody mepolizumab is a further therapeutic option that has demonstrated 864 effects on airways and allergic manifestations¹⁴³. In a randomised clinical trial, mepolizumab 865 was useful in most patients, especially for asthma and sinonasal disease, either by 866 maintaining sustained remission, reducing relapse rates or substantially reducing the dosage 867 or duration of glucocorticoid therapy 210 . Rituximab can also be used in EGPA, but its efficacy 868 in EGPA is less well established than for GPA and MPA, particularly for EGPA ANCA-869 patients, who show frequent relapse of asthma and sinonasal disease despite continued use of 870 rituximab²¹¹. 871

872

873 [H2] Monitoring disease activity

Clinical assessment and investigation follow the goals of maintenance outlined above, 874 namely early identification of return of disease activity, screening for drug toxicity, and 875 management and recognition of comorbidities. Serum creatinine measurement and urine 876 analysis to detect haematuria and proteinuria should be undertaken regularly to assess disease 877 activity and kidney function. Additional elements include patient education and psychosocial 878 support. Lower baseline IgG levels are associated with increased risk of immunodeficiency 879 after rituximab treatment. IgG levels should be checked periodically after treatment and 880 falling levels should influence the decision on repeat dosing. Routine CD19 counts (a 881

measure of B cell levels) are not required but may be informative in patients with incomplete response to rituximab or early relapse. Microbiological assessment of the nasopharynx and infection control with topical antiseptic agents or antibiotics may improve symptomatic management. More intensive monitoring may be required for organ-specific issues, such as bronchoscopy in tracheo-bronchial disease, repeat renal biopsy in advanced renal impairment with persisting urinary abnormalities, and cardiac imaging (echocardiography and MRI) in cases of cardiac involvement

- 889
- 890

[H2] Comorbidities and treatment effects

Infection is the most frequent serious problem in the first year of treatment for AAV. 891 Routine prophylaxis against Pneumocystis jirovecii pneumonia with sulfamethoxazole-892 trimethoprim (or alternative agents) is recommended and this treatment may also reduce the 893 frequency of other bacterial infections. Independent of its value in *Pneumocvstis jirovecii* 894 prophylaxis, there is not enough evidence to recommend routine use of long-term 895 sulfamethoxazole-trimethoprim in PR3-ANCA⁺ patients to prevent disease relapse. 896 Avoidance of drug-induced leukopenia is crucial. Rituximab-induced severe 897 immunodeficiency and any case of recurrent infection requires further immunological 898 assessment. Cases of hypoimmunoglobulinaemia with frequent infections may prompt use of 899 replacement immunoglobulin²¹². Routine vaccination against influenza and pneumococcal 900 infection is recommended for all patients, although serological responses may be impaired, 901 especially following rituximab treatment. 902

Venous thromboembolism should be treated with anti-coagulation agents, although these can be problematic in the setting of pulmonary haemorrhage²¹³. The risk of cardiovascular events is markedly raised in patients with more extensive disease, those without PR3-ANCA, and in the presence of renal impairment^{173,214}. There is no current advice concerning reducing these risks that is specific to patients with AAV, although careful attention to management of hypertension and hyperlipidaemia is recommended.

Cyclophosphamide and other oral immunosuppressive drugs are associated with an increased risk of malignancies, particularly non-melanoma skin cancer and urothelial malignancy^{215,216}. The rates of these cancers are falling with reduced immunosuppressant exposure, especially to cyclophosphamide, and the increased use of rituximab²¹⁷. The relative risk of malignancy increases with therapy duration, so screening for haematuria in patients exposed to cyclophosphamide and for skin malignancy should be lifelong. Prophylaxis

against gastric toxicity is often prescribed with high dose glucocorticoids, that also increase
 the risk of osteoporosis²¹⁸.

The management of organ damage in patients with AAV requires sub-specialist 917 intervention by those with appropriate experience, in co-ordination with the primary physician 918 overseeing the treatment of the vasculitis. Examples include surgical correction of lacrimal duct 919 obstruction, middle ear disease, nasal collapse and subglottic or endobronchial stenosis²¹⁹. Renal 920 transplantation is generally successful in AAV, although opportunistic infections may be more 921 common than in transplant recipients without AAV, reflecting the prior burden of 922 immunosuppressive therapy for AAV. Recurrence of vasculitis in the renal graft occurs in 2% of 923 transplant recipients with AAV and can lead to graft failure. Long-term patient survival is 924 similar to that of all causes of end-stage renal disease²²⁰. 925

926 [H1] Quality of Life

Patients are well aware of the challenges they face in managing AAV and self-report substantial impact on QOL from AAV itself as well as the burden of treatment and treatmentrelated toxicities (Box 4). The evolution in immunotherapeutics has converted AAV into a chronic disease and in consequence, patient priorities have realigned. Rather than focus on the spectre of major organ damage, patients rank QOL domains, such as fatigue and pain, as the greatest disease priorities²²¹.

There can be key differences between patient and clinician perceptions of these priorities. For example, although patients and clinicians both rank weight gain as a major concern about glucocorticoid treatment, patients frequently cite 'moon face' and other effects on appearance as highly concerning, whereas clinicians tend to not consider these effects to be as important as the risk of infection. A closer assessment of patient reported QOL will provide an opportunity for better alignment of patient and clinician priorities.

Characterization of a national cohort indicated that patients with AAV experienced substantially poorer levels of physical and mental QOL compared to matched controls in the general population (physical QOL: OR 7.0, 95% CI 4.4–11.1; mental QOL: OR 2.5, 95% CI 1.7–3.6), even though the vast majority (80%) of patients had achieved disease remission⁵.

Modern induction agents certainly result in noticeable improvements in QOL, but gains 943 are modest and patient QOL rarely returns to normal levels¹⁹⁵. Several factors may explain this 944 situation. First, high-dose glucocorticoids remain integral to standard care but they have multiple 945 toxic effects, including on QOL domains such as mental health²²², which should be assessed 946 using, for example, the Glucocorticoid Toxicity Index²²³. Second, almost all studies of OOL in 947 patients with AAV have used generic questionnaires, including the 36-item Short Form Health 948 Survey (SF-36), the EuroQol-5 Dimension (EQ-5D) and the Health Assessment Questionnaire, 949 which may not capture AAV-specific issues. 950

The OMERACT Vasculitis Working Group developed a 29-item tool, the AAV-PRO 951 questionnaire ^{224,225}, covering six domains (organ-specific symptoms, systemic symptoms, 952 treatment side effects, social and emotional effect, concerns about the future and physical 953 function), following patient qualitative interviews to address this unmet need. The AAV-PRO is 954 being integrated into ongoing randomized controlled trials. Similarly, the Patient-Reported 955 Outcomes Measurement Information System (PROMIS), covers fatigue, physical functioning 956 and pain interference. Both PRO systems assess function and QOL, are complementary and 957 require further validation, but they offer options to ensure patients' perspectives are considered 958 when assessing disease activity in AAV^{224,225}. 959

Impairments in QOL are the result of multiple factors, not only active inflammatory 960 disease but also disease damage, although they seem to be primarily related to psychosocial 961 factors, such as fatigue and dysfunctional coping strategies⁵ and skeletal dysfunction. 962 Persistently high levels of fatigue that does not change after treatment occurred in some patients 963 in a SF-36 vitality domain sub-analysis of the MYCYC and RITUXIVAS studies²²⁶. 964 Furthermore, there were marked disparities in physical QOL, including reduced knee extension 965 (76%) among patients with AAV compared with healthy controls. This reduced knee extension 966 was associated with impaired SF-36 Physical Component Score, as were metrics of pre-existing 967 muscle strength 227 . 968

Since QOL differs for each patient, QOL can also be helpful in developing more personalized treatment approaches. Studies examining whether physical activity improves fatigue in patients with AAV are underway²²⁸. As disease assessment in AAV should include function or QOL¹⁶⁷, reliable PRO tools are crucial not only for monitoring individual patients but also for high quality assessment of the impact of AAV and the success of its therapies.

975 [H1] Outlook

Substantial progress has been made in understanding and treating AAVs. GPA, MPA and 976 EGPA have gone from diseases with a high mortality within 1-2 years of the onset of symptoms 977 to chronic conditions that require lifelong specialist management. However, major challenges 978 remain. AAVs are still responsible for substantial morbidity and mortality, both from the 979 diseases themselves and from their treatments. Most treatments are fairly non-specific and come 980 with undesirable immune and metabolic adverse effects. Furthermore, the optimal duration of 981 therapy is uncertain, in part because of a lack of reliable predictors of relapse. More effective 982 management of AAV in the future will rely on a better understanding of the clinical aspects of 983 the disease and of disease-causing processes, together with the development of effective 984 biomarkers to better define disease activity and predict relapse. More precise, effective and less 985 toxic treatments require better knowledge, continued recognition of unmet clinical need, and 986 additional strategic and successful well-designed international collaborative clinical trials. These 987 efforts must be combined with more explicit recognition of important patient-centred outcomes, 988 both in trials and in clinical practice. EGPA, as an even less common form of AAV with 989 different clinical features to GPA and MPA, poses great challenges. In EGPA, even more than in 990 GPA and MPA, multidisciplinary and international collaborations are required to improve the 991 lives of people with this disease. Table 4 summarizes some of the emerging therapies and 992 biomarkers in AAV. 993

Better diagnostic and classification criteria of AAV will assist understanding, clinical 994 studies and improvements in patient care. The near-complete DCVAS has developed data-995 driven classification criteria for systemic vasculitides and should provide improved 996 standardized criteria. Furthermore, while EGPA is clearly a distinct disease entity, for GPA 997 and MPA the relationships and overlap between the syndromic classifications (GPA and 998 MPA), and the presence of autoreactivity to either PR3 or MPO must be more clearly 999 understood to aid progress in understanding, in clinical trial design and in management 1000 strategies. These efforts are not only important for improved induction therapies, but also for 1001 defining treatment duration and the management of relapse. 1002

Epidemiologically, there is inadequate data pertaining to EGPA in general, as well as a clear need to define the occurrence of all AAV types in Africa and South Asia. A better definition of the nature and burden of disease is likely to improve clinical care and outcomes, while more detailed understanding of the epidemiological associations will inform disease pathogenesis. The recognition that AAV is an autoimmune condition and the role of ANCAs in effecting injury have been major advances. Nonetheless, the complexity of AAV and the

inadequacies of current therapies demand a more detailed understanding of pathogenesis. Many 1009 questions remain. Can the understanding of the genetics of AAV, including EGPA, lead to 1010 pathway-directed therapies, either via new therapies or by repurposing existing therapeutics? 1011 Why are only some ANCAs pathogenic - and if we understand this, can we measure specific 1012 ANCA subtypes to develop more effective biomarkers? As there is substantial deposition of 1013 ANCA antigens in affected tissues, why is immunoglobulin deposition not more prominent? 1014 Why are some organs and tissues preferentially affected? Why do some individuals lose 1015 tolerance to PR3 or MPO, whereas most do not, when these neutrophil proteins are frequently 1016 released in an immunologically 'dangerous' infectious and inflammatory context? Can 1017 immunological tolerance be re-established by antigen-specific immunomodulation? Although 1018 much is known about events in the acute effector phase of injury, key events in more chronic 1019 disease and the role of T and B cell memory are unclear. Better understanding of these issues has 1020 the potential to move the goalposts in developing treatments that induce long lasting remission 1021 and tolerance. 1022

Key uncertainties in the care of patients with AAV include the optimal duration and 1023 intensity of maintenance therapy in an individual patient, and a lack of biomarkers that signal 1024 relapses. Better biomarkers, either singly or in combination, to predict severity and relapse risk 1025 would lead to a more precise treatment approach. Emerging biomarkers include urinary sCD163, 1026 which could be useful in determining renal relapse, with or without other markers^{164,229}. 1027 Following from observations that the risk of relapse in a patient with AAV is associated with an 1028 'active' T cell signature associated with the reduced expression of genes associated with T cell 1029 exhaustion¹³⁶, prospective clinical trials are underway to determine whether markers of this 1030 signature can inform treatment intensity. Other potential biomarkers are emerging and are 1031 undergoing further evaluation¹⁶⁵. 1032

The potential for complement inhibition (by targeting the C5a receptor) is one of several 1033 therapeutic strategies aimed at limiting neutrophil activation. Complement inhibition therapies 1034 could reduce or replace the current reliance on glucocorticoids in induction therapy regimens, as 1035 in phase II and III trials of C5aR inhibition^{110,111}. Glucocorticoids are a pillar of maintenance 1036 therapy for many patients and this reliance needs to be mitigated. In EGPA, further clinical trials 1037 in IL-5/IL-5R blockade will hopefully improve therapeutic options in this disease. Much 1038 attention has justifiably been given to ANCA-neutrophil mediated events in AAV, but the more 1039 selective inhibition of the underpinning T and B cell autoimmunity also has potential in inducing 1040 and maintaining remission. The goal in the treatment of AAV is not only to supress disease, but 1041 also to restore tolerance. Currently, there are no clear markers of tolerance to reassure clinicians 1042

and patients when ceasing immunosuppression and that can be used as surrogate markers in trials of new tolerogenic, curative therapies. Whereas tolerogenic strategies that have been applied to other diseases might be suitable for AAV, outcome measures in AAV are unclear, although at least in the case of MPO, progress has been made in defining key epitopes.

A multidisciplinary approach and patient engagement would result in a more integrated 1047 treatment strategy and improved outcomes in these complex multisystem diseases. Clinicians 1048 and patients should work together in a clinical setting to increase involvement of patients in their 1049 own care and treatment decisions. There are several dimensions to this issue. The educational 1050 needs of patients newly diagnosed with AAV are high, and the rarity of the conditions makes 1051 meeting these needs complicated. In the clinical trial environment, the use of PRO measures, 1052 such as AAV-PRO, should be mandatory. Interventional trials including outcome measures that 1053 focus on improving physical and mental QOL are just beginning²²⁸. AAVs are challenging and 1054 complex conditions but, with an integrated, collaborative approach that includes considerable 1055 patient involvement, great progress can be made in improving the lives of people with these 1056 diseases. 1057

1059 Acknowledgements

H-J.A., E.B., R K., and A.R.K. are members of the European Union Horizon 20/20 RELENT 1060 (RELapses prevENTion in chronic autoimmune disease) consortium that has received funding 1061 from the European Union Horizon 2020 research and innovation programme under grant 1062 agreement 668036. A.R.K. acknowledges funding support from the Australian National Health 1063 and Medical Research Council of Australia (1104422, 1084869, 1115805). H-J.A. was 1064 supported by the Deutsche Forschungsgemeinschaft (AN372/24-1). P.A.L. acknowledges 1065 support from the Medical Research Council (MR/L019027/1), Versus Arthritis (20593) and the 1066 British Heart Foundation (PG/13/64/30435). 1067

1068

Author contributions

All authors contributed to all sections of the Primer, with A.R.K. coordinating the project.

1071

1072 Competing interests

A.R.K. is Chair of the board of the Australian and New Zealand Vasculitis Society and has been 1073 a consultant for CSL Limited and Visterra. N.B. has received research funding from Vifor and 1074 GSK and speaking fees from Roche and Vifor. E.B. received consultancy and speaker fees from 1075 Roche which were paid to her employer. D.J. has been a consultant for ChemoCentryx, InflaRx, 1076 and Insmed. P.L. holds founding equity in and receives consultation fees from PredictImmune 1077 Ltd. P.M has been a consultant for AbbVie, Biogen, CSL Behring, Genzyme, Insmed, Janssen, 1078 Kiniska and Sparrow, received research funding and consulting fees from AstraZeneca, 1079 Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, ChemoCentryx, Genentech/Roche, GSK 1080 and InflaRx, and grant support from Kypha. U.S. has been a consultant for AstraZeneca, Insmed 1081 and ChemoCentryx and has received research funding from Genentech, Bristol-Myers Squibb, 1082 ChemoCentryx, and GSK. The remaining authors declare no competing interests. 1083
Display items 1085

	GPA	MPA	Eosinophilic GPA
Incidence ^a	0.4–11.9 cases per 1 million person-years	0.5–24.0 cases per 1 million person-years	0.5–2.3 cases per 1 million person-years
Prevalence ^a	2.3–146.0 cases per 1 million persons	9.0–94.0 cases per 1 million persons	2.0–22.3 cases per 1 million persons
Age of onset (years)	45–65	55-75	38–54
Male: Female	1:1	1:1	1:1
CHCC 2012 updated definition ¹⁴⁴	Necrotizing granulomatous inflammation, usually involving the upper and lower respiratory tract; necrotizing vasculitis affecting predominantly small-to-medium vessels (such as capillaries, venules, arterioles, arteries and veins). Necrotizing glomerulonephritis is common.	Necrotizing vasculitis, with few or no immune deposits, predominantly affecting small vessels (such as capillaries, venules, or arterioles). Necrotizing arteritis involving small and medium arteries may be present. Necrotizing glomerulonephritis is very common. Pulmonary capillaritis often occurs. Granulomatous inflammation is absent.	Eosinophil-rich and necrotizing granulomatous inflammation often involving the respiratory tract; necrotizing vasculitis predominantly affecting small to medium vessels; associated with asthma and eosinophilia. ANCA is more frequent when glomerulonephritis is present.
Frequency of ANCA	PR3-ANCA: 65–75% MPO-ANCA: 20–30%	PR3-ANCA: 20–30% MPO-ANCA: 55–65%	PR3-ANCA: <5% MPO-ANCA: 30–40%

1087

Key innate

immune cell

Relapse

rate

1088	ANCA	anti-neutro	phil cyto	plasmic	antibody.	CHCC	Chapel Hill	Consensus	Conference.
1000	111011,	and neuro	pini cyto	plasific	annoug,	CHCC,	Chaper I m	Consensus	Contenere,

GPA, granulomatosis with polyangiitis; MPA, microscopic polyangiitis; MPO, 1089

myeloperoxidase; PR3, proteinase 3. 1090

ANCA⁻: 5%

Higher than MPA (or

Neutrophil

MPO-AAV)

ANCA⁻: 5–10%

Lower than GPA (or

Neutrophil

PR3-AAV)

ANCA⁻: 55–65%

Relapse is frequent

Eosinophil

Name	Population	Intervention	Key result	Other findings
Induction therapy	7		1	
CYCLOPS ^{193,194}	Newly diagnosed	IV versus oral	IV non-	Decreased
	GPA or MPA,	CYC, plus GCs	inferior to oral	relapse with
	renal involvement,		CYC in	oral CYC (HR
	ANCA ^{+a} or		inducing	0.50) at long-
	ANCA ⁻ if biopsy		remission,	term follow up
			~50%	
			cumulative	
			dose with IV	
			vs oral CYC	
CORTAGE ²³⁰	New diagnosis, age	IV-CYC	Similar	Fewer serious
	\geq 65 years ^b	(maximum 6 x	remission	adverse events
		500 mg, every	rates	with lower dose
		2-3 weeks) plus		CYC and GCs
		9 months GCs		
		versus IV CYC		
		(~5.5g) plus 26		
		months GCs		
RAVE ^{195,196}	GPA or MPA	RTX versus	RTX non-	Similar short-
	newly diagnosed or	oral CYC, then	inferior to	term adverse
	relapsing, ANCA ⁺ ,	AZA	CYC. RTX	effects, similar
	SCr <353 µmol/l		may be better	relapse rates
			for relapsing	with single-
			AAV	dose RTX
RITUVAS ^{197,231}	GPA or MPA	2 doses IV-	Equivalent	Similar relapse
	newly diagnosed,	CYC, then RTX	outcomes	rates
	renal involvement,	versus IV-CYC		
	ANCA ⁺			

Table 2. Key clinical trials of therapies for GPA and/or MPA

MEPEX ^{201,232}	GPA or MPA with	PLEX versus	PLEX	Long-term
	biopsy proven	IV-MP as add	superior in	outcomes
	glomerulonephritis,	on to CYC and	rates of	similar
	SCr>500 µmol/l,	GCs	dialysis	
	ANCA ⁺ or ANCA ⁻		independence	
			at 3 months	
			and renal	
			survival at 12	
			months	
PEXIVAS ¹⁹¹	GPA or MPA	a) PLEX as add	a) PLEX not	Effects similar
	newly diagnosed or	on to CYC or	superior	across
	relapsing with renal	RTX and GCs	b) low-dose	subgroups
	involvement	b) Low-dose	GCs non-	
	(eGFR <50	GCs versus	inferior, with	
	$ml/min/1.73 m^2$) or	high-dose,	fewer serious	
	pulmonary	plus RTX or	infections	
	haemorrhage,	CYC		
	$ANCA^+$			
CLEAR ¹¹⁰	Phase II, newly	Avacopan and	Avacopan not	Avacopan:
	diagnosed or	reduced GCs or	inferior	faster reduction
	relapsing GPA or	no GCs, versus		in proteinuria,
	MPA with renal	GCs, plus RTX		better QOL
	involvement,	or CYC		indices with no
	$ANCA^+$			GCs
ADVOCATE ^{111,2}	Phase III, newly	Avacopan	Avacopan non	Less GCs-
33	diagnosed or	versus GCs,	inferior to	related toxicity
	relapsing GPA or	plus RTX or	GCs, superior	
	MPA, $ANCA^+$	CYC then AZA	for sustained	
			remission at	
			one year.	

IVIg ²⁰²	Active GPA or	CYC and GCs	Response:	Effects did not
	MPA, >2 months	versus add-on	14/17 IV-Ig,	extend beyond
	CYC and GCs,	IV-Ig (single	6/17 placebo	3 months
	$ANCA^+$	dose 2 g/kg)		
NORAM ^{199,234}	Newly diagnosed	MTX (20–25	MTX non-	MTX less
	GPA or MPA, less	mg weekly)	inferior for	effective for
	severe disease	versus oral	remission	extensive or
		CYC	induction	pulmonary
				disease; relapse
				more frequent
				with MTX
MYCYC ²⁰⁰	New diagnosis of	IV-CYC versus	MMF non-	Increased
	GPA or MPA,	MMF (2–3 g	inferior for	relapse with
	eGFR >15	daily)	remission	MMF,
	ml/min/1.73 m ²		induction	especially PR3-
				AAV
Maintenance ther	ару		1	
CYCAZAREM ²³	New diagnosis	Induction oral-	Similar	Relapse more
5	GPA or MPA, SCr	CYC or GCs 3–	relapse rates	common in
	<500 µmol/l,	6 months (to		GPA than MPA
	$ANCA^+$ or $ANCA^-$	remission), then		
	if biopsy	CYC 1.5mg/kg		
		daily versus		
		AZA to 12		
		months		
WEGENT ^{236,237}	GPA or MPA in	AZA versus	Similar	Long-term
	remission, initially	MTX	relapse rates	outcomes
	treated with IV		and toxicity	similar
	CYC and GCs,			
	$ANCA^+$ or $ANCA^-$			
	if biopsy			

IMPROVE ²³⁸	GPA or MPA	MMF versus	Relapse more	Similar adverse
	newly diagnosed,	AZA	common with	event rates
	in remission,		MMF (HR	
	ANCA ⁺		1.69)	
REMAIN ²⁰⁴	GPA or MPA in	AZA or GCs	Relapse	More serious
	remission 18–24	for 48 months	higher with	adverse events
	months post	versus	withdrawal	in continuation
	diagnosis, $ANCA^+$	withdrawal by	(OR 5.96)	group
	or ANCA ⁻ with	24 months		
	biopsy			
MAINRITSAN ²⁰	GPA or MPA in	RTX (500 mg,	Relapse	Similar rates of
3,239	remission after	every six	higher with	adverse events
	CYC and GCs,	months) versus	AZA at 28	Decreased
	$ANCA^+$	AZA	months (HR	relapse rate at
			6.61)	long-term
				follow up
MAINRITSAN2 ²	GPA or MPA, in	Scheduled RTX	No difference	Tailored RTX
08	remission, ANCA ⁺	versus RTX	in relapse	arm received
	and ANCA ⁻	tailored to B	rates	fewer infusions
		cell return		
		and/or ANCA		
MAINRITSAN3 ²	GPA or MPA,	No additional	Relapse	No increase in
05	sustained	treatment	higher with	adverse events
	remission, 2 years	(placebo)	placebo: 26%	with extended
	after RTX	versus 2 further	versus 4%	RTX
	maintenance	years of RTX	(HR 7.5)	
	therapy			
RITAZAREM ^{192,}	Relapsed GPA or	RTX (1 g every	RTX superior	No increase in
206	MPA re-induced	4 months)	in preventing	adverse events
	with RTX and	versus AZA	relapse (HR	with RTX
	GCs, in remission,		0.36)	
	ANCA ⁺			

WGET ²⁴⁰	GPA with active	Standard	No difference	6/89
	disease,	therapy ^c (pre-	in relapse	etanercept-
	ANCA ⁺ or ANCA ⁻	RTX era)	rates	treated patients
		versus add-on		developed solid
		etanercept		organ tumours
		(TNF inhibitor)		
Metzler et al. ²⁴¹	GPA, complete or	LEF versus	Relapses:	LEF: 19%
	partial remission	MTX	MTX 13/28,	withdrawal
			LEF 6/26	with adverse
			patients	effects at 30 mg
				dose
BREVAS ²⁴²	GPA or MPA in	AZA and low-	No	Recruitment
	remission 26 weeks	dose GCs	improvement	lower than
	after induction,	versus add-on	with	planned due to
	$ANCA^+$	belimumab	belimumab,	change in
			but low	clinical practice
			relapse rate in	
			placebo group	
Stegeman et al. ²⁴³	GPA in remission,	Standard	Fewer upper	Fewer
	$ANCA^+$ or $ANCA^-$	therapy ^c (pre-	airways	infections with
		RTX era)	relapses with	co-trimoxazole
		versus add-on	со-	
		co-trimoxazole	trimoxazole	

^a ANCA⁺ refers to a positive test at any time, not ANCA⁺ at the time of entry into study.

⁴ ^b Study also included polyarteritis nodosa (10 patients) and EGPA (14 patients), of the 104

5 patients.

⁶ ^cSeveral treatment pathways were available, depending on the severity and activity of disease

⁷ and other factors, but usually involved either MTX + GCs, then taper and try to cease GCs; or

⁸ oral CYC and GCs, then MTX or AZA taper and try to cease GCs.

9 AAV, ANCA-associated vasculitis; AZA, azathioprine; CYC, cyclophosphamide; eGFR,

¹⁰ estimated glomerular filtration rate; GCs, glucocorticoids; GPA, granulomatosis with

polyangiitis; FFS, Five Factor Score; HR, hazard ratio; LEF, leflunomide; MMF,

- mycophenolate; MPA, microscopic polyangiitis; MTX, methotrexate; OR, odds ratio; PLEX,
- ¹³ plasma exchange; PR3, proteinase 3; RTX, rituximab; SCr, serum creatinine; TNF, tumour
- 14 necrosis factor.

16 Table 3. Key clinical trials of therapies for EGPA

17

Trial	Population	Intervention (<i>n</i>)	Key result	Other findings
Ribi et al. ²⁴⁴	Treatment failure or	GCs and IV-CYC	No significant	Most remained on GCs
	relapse on GCs	(10) versus GCs	differences in	
	alone, limited	and AZA (9)	remission; CYC	
	disease, 1996		5/10, AZA 7/9	
	FFS = 0			
Puéchal et	New diagnosis,	GCs (25) versus	No effect on	No change in
al. ^{209,245}	limited disease,	add-on AZA (26)	combined endpoint	exacerbations of
	1996 FFS = 0,		of remission	asthma/rhinosinusitis.
	included other		induction and	Long-term outcomes
	AAV		relapse	similar
MIRRA ^{143,210}	Relapsing or	GCs (68) versus	Mepolizumab	Post hoc analysis sugg
	refractory EGPA,	add-on SC-	effective, mainly in	>75% of patients deriv
	stable GC dose	mepolizumab every	allergy related	benefit
	(7.5–50 mg)	four weeks for 52	manifestations	
		weeks (68)		
Guillevin et	Non-severe EGPA	GCs versus add-on	No benefit, results	Reflects historical
al. ²⁴⁶	(included PAN)	PLEX (18 in total)	grouped together	grouping of disease
			with patients with	
			PAN	
Guillevin et	Severe EGPA	IV-CYC and GCs	No benefit, results	Reflects historical
al. ²⁴⁷	(included PAN)	(6) versus add-on	grouped together	grouping of disease
		PLEX (8)	with patients with	
			PAN	

18

19 AAV, ANCA-associated vasculitis; AZA, azathioprine; CYC, cyclophosphamide; EGPA,

20 eosinophilic granulomatosis with polyangiitis; FFS, Five Factor Score; GCs, glucocorticoids;

PAN, polyarteritis nodosa; PLEX, plasma exchange; SC, subcutaneous.

²³ Table 4. Selected potential new management strategies and biomarkers in AAV^a

	Potential strategy	Stage of development
Treatments		
Complement inhibition	Avacopan (small-molecule C5a receptor antagonist) ¹¹⁰	Phase III trial completed (NCT02994927) ¹¹¹
SYK inhibition	Small-molecule inhibitors ²⁴⁸	Pre-clinical model proof of concept studies (MPO-AAV)
Eosinophils and Th2 cells in EGPA	Direct or indirect targeting of eosinophils and T _H 2 cells ^b , for example anti-IL-5R (benralizumab), Th2 and eosinophil chemokines	Non-inferiority clinical trial comparing mepolizumab with benralizumab (NCT04157348)
BAFF inhibition	Belilumab ²⁴² as add on to rituximab	Phase II trial in progress (NCT03967925)
Co-stimulatory signal blockade	Abatacept ²⁴⁹	Phase II trial in progress (NCT02108860)
T cell or T _H cell defining cytokine inhibition	Monoclonal antibodies, for example ustekinumab (anti-IL- 12p40) ^{121,218}	Pre-clinical model proof of concept studies published (MPO- AAV) ^{121,250}
Tolerogenic therapies	Peptide and antigen tolerogenic platforms	Pre-clinical model proof of concept studies published ²⁵¹ (MPO-AAV)
Biomarkers		
Renal activity or flare	Urinary soluble CD163 with or without other biomarkers (for example, soluble CD25, CCL2) ^{164,229}	Further clinical studies for biomarker utility
Overall risk of flare	Markers of T cell activity and exhaustion in AAV ^{135,136}	Trials of 17 gene qPCR stratification for prognosis in other diseases ²⁵²
Impending flare	$CD5^+ B cells^{253}$,	Clinical studies, NCT03906227

^aOnly those for which a rationale has been established are included.

- ²⁵ ^bIn addition to anti-IL-5 strategies already in clinical use.
- ²⁶ BAFF, B cell-activating factor; EGPA, eosinophilic granulomatosis with polyangiitis; qPCR,
- 27 quantitative polymerase chain reaction; SYK, spleen tyrosine kinase.

1 Figure legends

Figure 1. Small vessel vasculitis. a | The updated 2012 Chapel Hill Consensus Conference 2 classification of vasculitis¹⁴⁴, which is based on the size of the main vessels that are affected. 3 cytoplasmic antibody (ANCA)-associated vasculitides, The anti-neutrophil namely 4 granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic 5 granulomatosis with polyangiitis (EGPA), are small vessel vasculitides. **b** | Patterns of ANCA 6 staining by indirect immunofluorescence. A cytoplasmic pattern of staining for ANCA 7 (cANCA) is strongly associated with antibodies against PR3. A perinuclear pattern of staining 8 for ANCA (pANCA) is seen with antibodies against several different proteins, but anti-MPO 9 antibodies are most relevant for AAV. Part a is adapted with permission from [add publisher 10 here with permission] (REF ¹⁴⁴). Scale bar = $10 \mu m$. 11

12

Figure 2. Global epidemiology of ANCA-associated vasculitides. The map depicts studies that have examined the incidence of granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) per 1 million individuals per year. There is substantial variation in the relative incidences of GPA and MPA between Europe and Asia, and an effect of latitude. The regions studied include Australia²⁵⁴; Canada²⁵⁵; Germany²⁵⁶; Greece²⁵⁷; Japan²⁵⁸; Lithuania²⁵⁹, Turkey²⁶⁰; Peru²⁶¹; Spain (Lugo)²⁶²; Spain (Malaga)²⁶³; Sweden²⁶⁴; United Kingdom¹⁸; USA (Minnesota)²; USA (Western Montana)²⁶⁵; and the West Bank²⁶⁶.

20

Figure 3. Pathogenetic events in GPA and MPA. Simplified schematic showing events 21 leading to acute tissue injury in two forms of anti-neutrophil cytoplasmic antibody (ANCA)-22 associated vasculitis (AAV), namely granulomatosis with polyangiitis (GPA) and microscopic 23 polyangiitis (MPA). Risk factors for loss of tolerance and disease (pink) include genetic and 24 environmental factors, age, and infection or inflammation. These AAVs involve autoreactive 25 elements (blue), including effector cell responses to the neutrophil proteins proteinase 3 (PR3) 26 and myeloperoxidase (MPO) by autoreactive T cells and B cells, with the humoral response 27 resulting in the production of ANCAs. The key steps in the effector phase (green) are neutrophil 28 priming and activation by ANCA with subsequent neutrophil localisation to the 29 microvasculature and injury. MPO and PR3 are deposited in and around the microvasculature of 30 target tissues and effector T cells recognise these antigens, resulting in pro-inflammatory 31 cytokine production and further recruitment of effector leukocytes. These responses lead to 32

tissue injury and endothelial damage (red). Less is known about the pathogenesis of the other
 form of AAV, namely eosinophilic GPA (EGPA), than for GPA and MPA.

35

Figure 4. Loss of tolerance and the generation of effector responses in GPA and MPA. 36 Genetic risk factors in an ageing host combine with known or unknown environmental factors 37 (possibly including silica, certain medications or drugs) and potentially infection to induce a loss 38 of T and B cell tolerance to one of two clinically recognized neutrophil antigens, proteinase 3 39 (PR3) or myeloperoxidase (MPO). Autoantigen-specific T cells become activated and 40 differentiate into T helper (T_H) cells, including T follicular helper (T_{FH}) cells that provide help to 41 B cells, type 1 T helper (T_H1) cells and IL-17-producing T_H17 cells; an exhausted phenotype is 42 associated with a lower risk of disease relapse. B cells differentiate into plasma cells and 43 memory cells. Plasma cells secrete autoantibodies against PR3 (PR3-ANCA) or MPO-ANCA. 44 Neutrophils are activated and primed by pro-inflammatory cytokines, pattern-associated 45 molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and binding of 46 C5a to the C5a receptor on neutrophils. ANCAs bind to neutrophils in an antigen-specific and 47 Fcy receptor (FcyR)-dependent fashion to neutrophils and monocytes. BAFF, B cell-activating 48 factor; B_{reg} cells: regulatory B cells; NET: neutrophil extracellular trap; TLR: Toll-like receptor; 49 TNF: tumour necrosis factor; T_{reg} cells: regulatory T cells. GPA, granulomatosis with 50 polyangiitis; MPA, microscopic polyangiitis. 51

52

Figure 5. Endothelial and tissue injury in GPA and MPA. Anti-neutrophil cytoplasmic 53 antibody (ANCA)-activated, primed neutrophils localize to the endothelial cells in the 54 microvasculature of the kidneys, respiratory tract and other tissues. Recruitment is mediated by 55 adhesion molecules and chemokines. Adherent neutrophils induce endothelial injury by several 56 mechanisms. They produce reactive oxygen species (ROS) and degranulate, releasing proteases 57 and ANCA antigens. They generate neutrophil extracellular traps (NETs) and undergo cell death 58 by NETosis. ANCA antigens released by neutrophils and when in a complex with major 59 histocompatibility complex class II (MHC-II) or MHC-I can be recognized as antigenic peptides 60 by effector T helper 1 ($T_{\rm H}$ 1) cells, IL-17 producing T helper ($T_{\rm H}$ 17) cells and CD8⁺ T cells, at 61 least in the case of myeloperoxidase (MPO). Antigen-presenting cells can include endothelial 62 cells, intravascular monocytes and dendritic cells (DCs). Cytotoxic CD4⁺ T cells expressing 63 NKG2D recognize MHC-I-polypeptide-related sequence A (MICA), which is upregulated on 64 activated endothelial cells and in granulomas. Mechanisms of extravascular tissue injury include 65

the extravasation of inflammatory leukocytes, the formation of B cell aggregates that may 66 present ANCA antigens to T cells, produce pro-inflammatory cytokines and produce ANCA in 67 situ. Tissue-resident and recruited DCs present antigen, whereas tissue-resident and recruited 68 macrophages are pro-inflammatory and pro-fibrotic. These macrophages shed soluble CD163 69 (sCD163), which is a potential biomarker of disease activity. Leukocytes within granulomas 70 contribute to inflammatory injury. Ag, antigen; DAMPs, danger-associated molecular patterns; 71 FcyR, Fcy receptor; ICAM1, intercellular adhesion molecule 1; PAMPs, pattern-associated 72 molecular patterns; ROS, reactive oxygen species; TLR, Toll-like receptor; VCAM1, vascular 73 cell adhesion protein 1. 74

75

Figure 6. Clinical features of AAV. a | Schematic showing the organs, organ systems and 76 tissues that are affected in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides 77 (AAVs). The approximate relative frequency of involvement is also shown. **b** | Radiological 78 features of sinonasal disease in AAV. Coronal CT images showing (left) destruction of the nasal 79 septum, inferior turbinates and right middle turbinate (arrowheads) in a patient with newly 80 diagnosed GPA; (right) chronic changes in sinonasal GPA showing simultaneous nasal septum 81 destruction (white arrowhead) and neo-osteogenesis (black arrowhead). **b** | Radiological features 82 of pulmonary hemorrhage in acute AAV. Chest X-ray (left) showing infiltrates and changes 83 consistent with acute pulmonary haemorrhage; (right) transverse CT image showing acute 84 pulmonary haemorrhage and "ground-glass" changes (*). =, rate of involvement approximately 85 equal to; <, rate of involvement more frequent than; <<, rate of involvement substantially more 86 frequent than; EGPA, eosinophilic granulomatosis with polyangiitis; GPA, granulomatosis with 87 polyangiitis; MPA, microscopic polyangiitis. ^aFor EGPA, asthma and allergic manifestations are 88 included in the frequency of involvement. Parts b and c courtesy of Dr Ken Lau and A/Prof 89 Joanne Rimmer, Monash Health and Monash University. 90

91

Figure 7. Histopathology of AAV. a | Fibrinoid vessel wall necrosis (N) is the hallmark of
AAV, accompanied by a 'granuloma-like' mixed inflammatory infiltrate (circled) composed of
macrophages, lymphocytes, plasma cells and granulocytes in microscopic polyangiitis (MPA).
b | Resolution of inflammation leads to transmural (<) fibrous scars (F) and substantial
narrowing (*) or even complete occlusion of the vessel lumen. c | 'Geographic' necrosis (N) of
confluent epithelioid granulomas in the lungs in granulomatosis with polyangiitis (GPA). Inset
shows a subepithelial nasal granuloma in GPA, composed of loose aggregates of epitheloid cells

and giant cells. **d** | Epithelioid granulomas (circled) in eosinophilic GPA (EGPA) in the nose are 99 more compact and are surrounded by eosinophils. e | Early lesions in the lung in MPA often only 100 show neutrophilic capillaritis (C) and fibrinous exudates (*). f | Giant cells with sometimes 101 'smudged' appearing nuclei (>), neutrophilic granulocytes and nuclear debris (*) from 102 neutrophils in epithelioid granulomas in the lungs in GPA. g | Necrosis of glomerular capillaries 103 (N) is seen adjacent to an unaffected glomerulus (G) in MPA. h | Lesions of different age are 104 seen with partial or circumferential crescents and variable destruction of the Bowman capsule 105 (>) in MPA. i | Neutrophilic capillaritis (C) and multinucleated giant cells (GC) are characteristic 106 features of GPA in the nasal mucosa. Staining methods are haematoxylin and eosin (parts $\mathbf{a}-\mathbf{f}$) 107 acid fuchsin orange G (part g); Periodic acid–Schiff (part h) and Giemsa (part i). 108

109

Figure 8. Management of GPA and MPA cases that present with organ or life-threatening 110 manifestations. a | Current treatment approaches include an induction phase to induce 111 remission, followed by a maintenance phase, then long-term follow up. **b** | Current induction 112 treatment regimens for several diseases are centred on glucocorticoids (GCs), in combination 113 with either cyclophosphamide (CYC) or rituximab (RTX). Intravenous GCs are often 114 administered after treatment with high-dose oral prednisolone (or prednisone) at an initial dose 115 of 50-75 mg. GC dose is tapered over several months, with the standard of care being the 116 quicker taper used in the PEXIVAS trial¹⁹¹. The optimal duration of GC therapy in the 117 maintenance phase of AAV is unclear, but GCs are often withdrawn over 4-36 months. CYC is 118 recommended for induction, for between 3-6 months, and can be administered by intravenous 119 pulse or daily oral therapy, with a switch to maintenance therapy at remission (3-6 months). 120 Rituximab can also be given for induction therapy in 2-4 doses and is increasingly being used in 121 preference to CYC. RTX is given for maintenance therapy, after induction with RTX or CYC. 122 Oral immunosuppressive agents, including azathioprine (AZA), methotrexate (MTX) or 123 mycophenolate mofetil (MMF), are alternatives for RTX for maintenance therapy. MTX or 124 MMF are alternatives to CYC or RTX for induction therapy in non-organ threatening disease. c 125 Disease state corresponding with phase of therapy in parts **a** and **b**. Some patients do not respond 126 to one of the standard induction regiments and develop refractory disease, whereas others 127 relapse while on or after maintenance therapy is halted, and therefore require re-initiation of 128 induction therapy. 129

131 Boxes

132 Box 1. Diagnostic testing methods in AAV

Most cases of granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) are characterized by anti-neutrophil cytoplasmic antibodies (ANCAs) directed against either proteinase 3 (PR3) or myeloperoxidase (MPO). Two methods have been used to detect these antibodies in clinical practice, namely indirect immunofluorescence (IIF) and various antigen-specific immunoassays, most commonly enzyme-linked immunosorbent assays (ELISAs).

139

140 Indirect immunofluorescence

This technique involves incubating diluted patient serum samples with ethanol-fixed and permeabilized neutrophils from healthy donors, which in some assays are pre-attached to glass slides. Bound ANCA is then detected using a fluorescent secondary anti-human IgG antibody, and the presence, titre and pattern of fluorescence are assessed by fluorescence microscopy. There are two primary patterns of fluorescence that are relevant to the diagnosis of AAV (Figure lc):

- cANCA: a cytoplasmic pattern of ANCA staining, which is strongly associated with anti PR3 antibodies (PR3-ANCA)
- pANCA: a perinuclear pattern of ANCA staining, which in AAV is strongly associated
 with anti-MPO antibodies (MPO-ANCA). The perinuclear pattern is a consequence of
 the ethanol fixation of neutrophils, as the highly cationic MPO localizes around the
 negatively charged cell nucleus after ethanol fixation.
- 153

154 Antigen-specific assays for PR3-ANCA and MPO-ANCA

The most commonly used assays are ELISAs specific for either PR3-ANCA or MPO-ANCA. Improvements in antigen-capture methods have resulted in better assay performance. In addition, several other types of solid-phase antigen-specific assays may be used to detect PR3-ANCA and MPO-ANCA¹⁶¹.

Approaches to ANCA testing when the diagnosis of AAV (that is, GPA, MPA or EGPA) is suspected are informed by consensus statements, but there is substantial variation in practice²⁶⁷. With improved immunoassay performance, the approach recommended by an international consensus statement¹⁶¹ after a large multicentre study²⁶⁸ is to use antigen-specific assays for PR3-ANCA and MPO-ANCA as the initial screening method when AAV is suspected, with IIF only performed if these assays are negative. Approaches based on 1999 guidelines²⁶⁹, which are still used in some diagnostic laboratories, involve a combination of IIF screening with specific PR3-ANCA and MPO-ANCA ELISAs for positive samples, or using both methods for each sample.

- Although ANCAs are primarily associated with AAVs, a positive ANCA test by IIF occurs in other diseases, including:
- Infections, including infective endocarditis, where PR3-ANCA or MPO-ANCA can occur²⁷⁰⁻²⁷², an important differential diagnosis, as misdiagnoses result in unwarranted immunosuppression with life-threatening consequences. ANCA may be present in other chronic infections, including tuberculosis, and *Pseudomonas aeruginosa* infection in individuals with cystic fibrosis^{273,274}.
- Gastrointestinal tract diseases²⁷³, including ulcerative colitis and liver disease, such as autoimmune hepatitis, primary biliary sclerosis, primary sclerosing cholangitis and viral hepatitis. The ANCA pattern in these conditions resembles, but differs from, the pANCA pattern and is described as atypical ANCA (aANCA). In ulcerative colitis, PR3-ANCA is present, but is uncommon.
- Other autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis (notwithstanding the co-existence of AAV or AAV-like features in a small minority of people with these diseases).
- 183 184

• Drug-associated AAV is associated not only with MPO-ANCA but also anti-lactoferrin and anti-neutrophil elastase antibodies.

Other proteins associated with a positive IIF ANCA test in these diseases include azurocidin, bactericidal/permeability increasing protein and cathepsin G. Their clinical utility is unproven and antigen-specific testing is not routinely performed in AAV. Besides PR3 and MPO, other antigens may be relevant to AAV, but are not currently tested for in routine clinical practice.

Box 2. Clinical features of the ANCA-associated vasculitides

191 *Granulomatosis with polyangiitis (GPA)*

Symptoms of systemic vasculitis, such as fever, weight loss, malaise and fatigue. 192 Symptoms and signs of small vessel vasculitis, often in the ear, nose and throat (ENT) tract 193 (nasal and oral ulcers and crusting, nose bleeds, nasal polyps, paranasal sinusitis, cartilaginous 194 destructions with granulomas on biopsy, hearing impairment and otorrhea), the eyes 195 (conjunctival injection, eye pain, diplopia, proptosis, uveitis and retroorbital mass), the airways 196 and lungs (hoarseness, cough, dyspnoea, stridor, pleuritic pain, pulmonary nodules, infiltrates, 197 cavities and haemorrhage with granulomatous inflammation on biopsy), the kidneys (urinary 198 abnormalities, elevated serum creatinine with variable degrees of proteinuria and rapidly-199 progressing pauci-immune glomerulonephritis on biopsy), the peripheral nervous system 200 (mononeuritis) and the skin (purpura, focal necrosis, ulcers and leukocytoclastic vasculitis on 201 biopsy). 202

203

204 *Microscopic polyangiitis (MPA)*

Symptoms of systemic vasculitis, such as fever, weight loss, malaise, and fatigue. Symptoms and signs of small vessel vasculitis are as for GPA, but without granulomatous inflammation on biopsy. ENT tract manifestations are as in GPA but less frequent. The kidneys (rapidly progressing necrotizing pauci-immune glomerulonephritis) and the skin (necrotizing leukocytoclastic vasculitis) are commonly affected.

210

Eosinophilic granulomatosis with polyangiitis (EGPA)

Many but not all individuals with EGPA have clear features of vasculitis. Symptoms of 212 systemic vasculitis include fever, weight loss, malaise, fatigue and lymphadenopathy. Small 213 vessel vasculitis of skin, peripheral nervous system, kidneys, heart, and gastrointestinal tract 214 occurs. Cardiac involvement, including cardiomyopathy, contributes considerably to mortality in 215 EGPA. Asthma is a near universal feature of EGPA and usually precedes vasculitis. Pulmonary 216 infiltrates and >10% eosinophilia in peripheral blood are common. ENT involvement is frequent, 217 including serous otitis media, allergic rhinitis, nasal obstruction, recurrent sinusitis and nasal 218 polyposis. 219

Box 3: Drug induced vasculitis

A variety of drugs are associated with ANCA⁺ vasculitis, with at least some features of 221 AAV. Propylthiouracil (PTU) and to a lesser degree some other antithyroid drugs is relatively 222 commonly associated with MPO-ANCA, with some people developing an MPA-like vasculitis²⁷⁵. Other drugs, including hydralazine (an anti-hypertensive vasodilator), minocycline 224 (a tetracycline antibiotic), and cocaine adulterated with the antihelminthic agent levamisole are 225 associated with ANCA⁺ vasculitis²⁷⁶. Leukotriene antagonists have been implicated in EGPA, 226 though causality is unclear²⁷⁷. The therapeutic agents associated with ANCA⁺ vasculitis have 227 been listed in detail elsewhere²⁷⁵. The epidemiology of drug induced vasculitis largely reflects 228 patterns and frequency of use of these drugs in different populations (for example, PTU is 229 widely used in China, while cocaine/levamisole is more common in the USA). 230

Clinically, a pANCA pattern is most common, but concurrent pANCA and cANCA positivity is common in cocaine/levamisole induced disease. Autoantibody specificities include MPO-ANCA, as well as other, non-classical ANCA antigens such as lactoferrin and neutrophil elastase (Box 2)^{275,276}. Patients are often younger. Clinical manifestations can mimic AAV but are often less severe. Skin involvement may be more prominent, variant in nature and severe, particularly with cocaine/levamisole, and neutropenia can be present in vasculitis secondary to PTU or cocaine/levamisole. Anti-nuclear antibodies may be present, and hydralazine and minocycline are both associated with a lupus-like phenotype.

The mechanisms that underpin drug induced vasculitis are unclear, though some clues exist. Levamisole and minocycline have immunomodulatory effects. PTU inhibits thyroid peroxidase that has sequence homology to MPO. Due to this homology, it alters the structure and function of MPO in rats^{275,278}. Furthermore, PTU induces abnormal NET formation from human neutrophils *in vitro* and MPO-AAV *in vivo* in rats²⁷⁹. These data, as well as cocaine/levamisole's effects on NET formation²⁸⁰ support abnormal or aberrant autoantigen exposure as a factor in the development of AAV.

Recognition of drug induced vasculitis via an appropriate index of clinical suspicion, obtaining a medication history and enquiring as to illicit drug use, potentially with urinary screening, is central to the management of these conditions. Ceasing the potential offending agent may itself result in improvement. However, immunosuppression may be required and severe, organ threatening disease can occur. Re-challenge with the suspected drug for diagnostic reasons is not recommended.

252

Box 4. A patient's experience of AAV

Being diagnosed with a rare and potentially life-threatening disease is something that no one 254 expects to happen to them. Many patients with AAV have substantial delays in time to diagnosis 255 and may have had serious hospitalizations and organ damage by the time they are diagnosed. 256 But once the initial crisis is over, the ongoing work to achieve and maintain remission begins. It 257 is important to note that AAV is typically a life-long chronic condition that will require constant 258 vigilance by patients and their doctors. Fortunately, there have been new treatment options for 259 AAV in recent years, especially new biologic therapies. However, these medications have little 260 or no impact on the fatigue and pain caused by AAV. Thus, while patients may be 'in remission' 261 with the help of ongoing immunosuppressive therapy, many of us still feel the relentless effects 262 of this fatigue and pain on a daily basis. Patients also worry about the potential adverse effects 263 from the treatments and the balancing of toxicity from the treatment against damage from the 264 vasculitis itself. Better treatments for AAV are needed, especially less toxic substitutes for 265 glucocorticoids. But also needed are better ways to measure disease activity, such as biomarkers 266 that will distinguish our flares from symptoms caused by other things, such as treatment toxicity 267 or infections. In addition, urgently needed are treatment options for symptoms that have a major 268 impact on our quality of life, such as fatigue and pain, which often remain unaddressed. Greater 269 patient input on setting treatment priorities will help focus attention on our unmet quality of life 270 needs. 271

272

Jennifer Gordon, PhD. Dr. Gordon has EGPA and serves on the Vasculitis Foundation Vasculitis
 Patient-Powered Research Network.

275

277	Refere	ences
278 279	1	Watts, R. A. et al. Classification, epidemiology and clinical subgrouping of
280		antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. <i>Nephrol. Dial.</i>
281		Transplant. 30 Suppl 1, i14-22 (2015).
282	A gra	nular and comprehensive review of contemporary AAV epidemiology.
283	2	Berti, A., Cornec, D., Crowson, C. S., Specks, U. & Matteson, E. L. The
284		Epidemiology of Antineutrophil Cytoplasmic Autoantibody-Associated Vasculitis in
285		Olmsted County, Minnesota: A Twenty-Year US Population-Based Study. Arthritis
286		Rheum. 69, 2338-2350 (2017).
287	3	Mossberg, M., Segelmark, M., Kahn, R., Englund, M. & Mohammad, A. J.
288		Epidemiology of primary systemic vasculitis in children: a population-based study
289		from southern Sweden. Scand. J. Rheumatol. 47, 295-302 (2018).
290	4	Tan, J. A. et al. Mortality in ANCA-associated vasculitis: ameta-analysis of
291		observational studies. Ann. Rheum. Dis. 76, 1566-1574 (2017).
292	5	Basu, N. et al. The characterisation and determinants of quality of life in ANCA
293		associated vasculitis. Ann. Rheum. Dis. 73, 207-211 (2014).
294	6	Raimundo, K., Farr, A. M., Kim, G. & Duna, G. Clinical and Economic Burden of
295		Antineutrophil Cytoplasmic Antibody-associated Vasculitis in the United States. J.
296		Rheumatol. 42, 2383-2391 (2015).
297	7	Knight, A., Ekbom, A., Brandt, L. & Askling, J. Increasing incidence of Wegener's
298		granulomatosis in Sweden, 1975-2001. J. Rheumatol. 33, 2060-2063 (2006).
299	8	Liu, L. J., Chen, M., Yu, F., Zhao, M. H. & Wang, H. Y. Evaluation of a new
300		algorithm in classification of systemic vasculitis. Rheumatology 47, 708-712 (2008).
301	9	Watts, R. A. et al. Renal vasculitis in Japan and the UK-are there differences in
302		epidemiology and clinical phenotype ? Nephrol. Dial. Transpl. 23, 3928-3931 (2008).
303	10	Watts, R. A. et al. Geoepidemiology of systemic vasculitis: comparison of the
304		incidence in two regions of Europe. Ann. Rheum. Dis. 60, 170-172 (2001).
305	11	O'Donnell, J. L., Stevanovic, V. R., Frampton, C., Stamp, L. K. & Chapman, P. T.
306		Wegener's granulomatosis in New Zealand: evidence for a latitude-dependent
307		incidence gradient. Int. Med. J. 37, 242-246 (2007).
308	12	Cao, Y. et al. DRB1*15 allele is a risk factor for PR3-ANCA disease in African
309		Americans. J. Am. Soc. Nephrol. 22, 1161-1167 (2011).

310	13	Mahr, A., Guillevin, L., Poissonnet, M. & Ayme, S. Prevalences of polyarteritis
311		nodosa, microscopic polyangiitis, Wegener's granulomatosis, and Churg-Strauss
312		syndrome in a French urban multiethnic population in 2000: a capture-recapture
313		estimate. Arthritis Rheum. 51, 92-99 (2004).
314	14	Pearce, F. A. et al. Incidence of ANCA-associated vasculitis in a UK mixed ethnicity
315		population. Rheumatology 55, 1656-1663 (2016).
316	15	Iudici, M. et al. Childhood-onset granulomatosis with polyangiitis and microscopic
317		polyangiitis: systematic review and meta-analysis. Orphanet J. Rare Dis. 11, 141
318		(2016).
319	16	Falk, R. J., Hogan, S., Carey, T. S. & Jennette, J. C. Clinical course of anti-neutrophil
320		cytoplasmic autoantibody-associated glomerulonephritis and systemic vasculitis. The
321		Glomerular Disease Collaborative Network. Ann. Int. Med. 113, 656-663 (1990).
322	17	Tidman, M., Olander, R., Svalander, C. & Danielsson, D. Patients hospitalized
323		because of small vessel vasculitides with renal involvement in the period 1975-95:
324		organ involvement, anti-neutrophil cytoplasmic antibodies patterns, seasonal attack
325		rates and fluctuation of annual frequencies. J. Intern. Med. 244, 133-141 (1998).
326	18	Watts, R. A., Mooney, J., Skinner, J., Scott, D. G. & Macgregor, A. J. The contrasting
327		epidemiology of granulomatosis with polyangiitis (Wegener's) and microscopic
328		polyangiitis. Rheumatology 51, 926-931 (2012).
329	19	Draibe, J. et al. Seasonal variations in the onset of positive and negative renal ANCA-
330		associated vasculitis in Spain. Clin. Kidney J. 11, 468-473 (2018).
331	20	Mahr, A. et al. Seasonal variations in onset of Wegener's granulomatosis: increased in
332		summer? J Rheumatol. 33, 1615-1622 (2006).
333	21	Aries, P. M., Herlyn, K., Reinhold-Keller, E. & Latza, U. No seasonal variation in the
334		onset of symptoms of 445 patients with 'Wegener's granulomatosis. Arthritis Rheum.
335		59 , 904 (2008).
336	22	Stegeman, C. A. et al. Association of chronic nasal carriage of Staphylococcus aureus
337		and higher relapse rates in Wegener granulomatosis. Ann. Int. Med. 120, 12-17
338		(1994).
339	A stuc	ly that provides evidence for a putative causal role for infection in the relapse of
340	granu	lomatosis with polyangiitis.

341	23	Laudien, M. et al. Nasal carriage of Staphylococcus aureus and endonasal activity in
342		Wegener's granulomatosis as compared to rheumatoid arthritis and chronic
343		rhinosinusitis with nasal polyps. Clin. Exp. Rheumatol. 28, S51-S55 (2010).
344	24	Lane, S. E., Watts, R. A., Bentham, G., Innes, N. J. & Scott, D. G. Are environmental
345		factors important in primary systemic vasculitis? A case-control study. Arthritis
346		<i>Rheum.</i> 48 , 814-823 (2003).
347	25	Nuyts, G. D. et al. Wegener Granulomatosis Is Associated to Exposure to Silicon-
348		Compounds - a Case-Control Study. Nephrol. Dial. Transplant. 10, 1162-1165
349		(1995).
350	26	Yashiro, M. et al. Significantly high regional morbidity of MPO-ANCA-related
351		angitis and/or nephritis with respiratory tract involvement after the 1995 Great
352		Earthquake in Kobe (Japan). Am. J. Kidney Dis. 35, 889-895 (2000).
353	27	Takeuchi, Y. et al. The influence of the Great East Japan earthquake on microscopic
354		polyangiitis: A retrospective observational study. PLos One 12 (2017).
355	28	Farquhar, H. J. et al. Incidence of anti-neutrophil cytoplasmic antibody-associated
356		vasculitis before and after the February 2011 Christchurch Earthquake. Int. Med. J.
357		47 , 57-61 (2017).
358	29	Cotch, M. F. et al. The epidemiology of Wegener's granulomatosis. Estimates of the
359		five-year period prevalence, annual mortality, and geographic disease distribution
360		from population-based data sources. Arthritis Rheum. 39, 87-92 (1996).
361	30	Li, J. et al. The frequency of ANCA-associated vasculitis in a national database of
362		hospitalized patients in China. Arthritis Res. Ther. 20, 226 (2018).
363	31	Gatenby, P. A., Lucas, R. M., Engelsen, O., Ponsonby, A. L. & Clements, M.
364		Antineutrophil Cytoplasmic Antibody-Associated Vasculitides: Could Geographic
365		Patterns Be Explained by Ambient Ultraviolet Radiation? Arthritis Care Res. 61,
366		1417-1424 (2009).
367	32	McDermott, G. et al. Association of Cigarette Smoking With Antineutrophil
368		Cytoplasmic Antibody-Associated Vasculitis. JAMA Intern. Med. 180, 1-7 (2020).
369	33	Hutton, H. L., Holdsworth, S. R. & Kitching, A. R. ANCA-Associated Vasculitis:
370		Pathogenesis, Models, and Preclinical Testing. Sem. Nephrol. 37, 418-435 (2017).
371	34	Knight, A., Sandin, S. & Askling, J. Risks and relative risks of Wegener's
372		granulomatosis among close relatives of patients with the disease. Arthritis Rheum.
373		58 , 302-307 (2008).

374	35	Jagiello, P. et al. New genomic region for Wegener's granulomatosis as revealed by
375		an extended association screen with 202 apoptosis-related genes. Hum. Genet. 114,
376		468-477 (2004).
377	36	Lyons, P. A. et al. Genetically distinct subsets within ANCA-associated vasculitis. N.
378		Eng. J. Med. 367, 214-223 (2012).
379	With	references 37 and 38, provides clear evidence for genetic contribution of AAV, to
380	differ	ences between PR3-AAV and MPO-AAV, and links PR3-AAV to variation in the
381	autoa	ntigen itself.
382	37	Xie, G. et al. Association of granulomatosis with polyangiitis (Wegener's) with HLA-
383		DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis.
384		Arthritis Rheum. 65, 2457-2468 (2013).
385	38	Merkel, P. A. et al. Identification of Functional and Expression Polymorphisms
386		Associated With Risk for Antineutrophil Cytoplasmic Autoantibody-Associated
387		Vasculitis. Arthritis Rheum. 69, 1054-1066 (2017).
388	39	Siminovitch, K. A. PTPN22 and autoimmune disease. Nat. Genet. 36, 1248-1249
389		(2004).
390	40	Niehrs, A. et al. A subset of HLA-DP molecules serve as ligands for the natural
391		cytotoxicity receptor NKp44. Nat. Immunol. 20, 1129-1137 (2019).
392	41	Lyons, P. A. et al. Genome-wide association study of eosinophilic granulomatosis
393		with polyangiitis reveals genomic loci stratified by ANCA status. Nat. Commun. 10,
394		5120 (2019).
395	42	Sablé-Fourtassou, R. et al. Antineutrophil cytoplasmic antibodies and the Churg-
396		Strauss syndrome. Ann. Int. Med. 143, 632-638 (2005).
397	43	Sinico, R. A. et al. Prevalence and clinical significance of antineutrophil cytoplasmic
398		antibodies in Churg-Strauss syndrome. Arthritis Rheum. 52, 2926-2935 (2005).
399	44	Nakazawa, D. et al. Enhanced formation and disordered regulation of NETs in
400		myeloperoxidase-ANCA-associated microscopic polyangiitis. J. Am. Soc. Nephrol.
401		25 , 990-997 (2014).
402	45	Ooi, J. D. et al. A plasmid-encoded peptide from Staphylococcus aureus induces anti-
403		myeloperoxidase nephritogenic autoimmunity. Nat. Comm. 10, 3392 (2019).
404	46	Jones, B. E. et al. Gene-Specific DNA Methylation Changes Predict Remission in
405		Patients with ANCA-Associated Vasculitis. J. Am. Soc. Nephrol. 28, 1175-1187
406		(2017).

Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623-625 (2009). Martin, K. R. & Witko-Sarsat, V. Proteinase 3: the odd one out that became an autoantigen. J. Leuk. Biol. 102, 689-698 (2017). Witko-Sarsat, V. et al. A large subset of neutrophils expressing membrane proteinase 3 is a risk factor for vasculitis and rheumatoid arthritis. J. Am. Soc. Nephrol. 10, 1224-1233 (1999). Jerke, U. et al. Complement receptor Mac-1 is an adaptor for NB1 (CD177)-mediated PR3-ANCA neutrophil activation. J. Biol. Chem. 286, 7070-7081 (2011). Odobasic, D., Kitching, A. R. & Holdsworth, S. R. Neutrophil-Mediated Regulation of Innate and Adaptive Immunity: The Role of Myeloperoxidase. J. Immunol. Res. 2016, 2349817 (2016). Reiding, K. R. et al. Neutrophil myeloperoxidase harbors distinct site-specific peculiarities in its glycosylation. J. Biol. Chem. 294, 20233-20245 (2019). Kain, R. et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med. 14, 1088-1096 (2008). Pendergraft, W. F. et al. Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3. Nat. Med. 10, 72-79 (2004). Yang, J. et al. ANCA patients have T cells responsive to complementary PR-3 antigen. Kidney Int. 74, 1159-1169 (2008). Suzuki, K. et al. A novel autoantibody against moesin in the serum of patients with MPO-ANCA-associated vasculitis. Nephrol. Dial. Transplant. 29, 1168-1177 (2014). Bautz, D. J. et al. Antibodies with dual reactivity to plasminogen and complementary PR3 in PR3-ANCA vasculitis. J. Am. Soc. Nephrol. 19, 2421-2429 (2008). Berden, A. E. et al. Anti-plasminogen antibodies compromise fibrinolysis and associate with renal histology in ANCA-associated vasculitis. J. Am. Soc. Nephrol. , 2169-2179 (2010). McCall, A. S. et al. Inhibitory Anti-Peroxidasin Antibodies in Pulmonary-Renal Syndromes. J. Am. Soc. Nephrol. 29, 2619-2625 (2018). Simon, A. et al. Detection of Anti-Pentraxin-3 Autoantibodies in ANCA-Associated Vasculitis. PLos One 11, e0147091 (2016). Roth, A. J. et al. Anti-LAMP-2 antibodies are not prevalent in patients with antineutrophil cytoplasmic autoantibody glomerulonephritis. J. Am. Soc. Nephrol. 23, 545-555 (2012).

- 62 Tadema, H., Kallenberg, C. G., Stegeman, C. A. & Heeringa, P. Reactivity against 441 complementary proteinase-3 is not increased in patients with PR3-ANCA-associated 442 vasculitis. PLos One 6, e17972 (2011). 443 63 Olson, S. W. et al. Asymptomatic autoantibodies associate with future anti-glomerular 444 basement membrane disease. J. Am. Soc. Nephrol. 22, 1946-1952 (2011). 445 Cui, Z., Zhao, M. H., Segelmark, M. & Hellmark, T. Natural autoantibodies to 64 446 myeloperoxidase, proteinase 3, and the glomerular basement membrane are present in 447 normal individuals. Kidney Int. 78, 590-597 (2010). 448 Tan, D. S. et al. Thymic deletion and regulatory T cells prevent antimyeloperoxidase 65 449 GN. J. Am. Soc. Nephrol. 24, 573-585 (2013). 450 Abdulahad, W. H. et al. Functional defect of circulating regulatory CD4+ T cells in 66
 - Abdulahad, W. H. *et al.* Functional defect of circulating regulatory CD4+ T cells in
 patients with Wegener's granulomatosis in remission. *Arthritis Rheum.* 56, 2080-2091 (2007).
 - Free, M. E. *et al.* Patients with antineutrophil cytoplasmic antibody-associated
 vasculitis have defective Treg cell function exacerbated by the presence of a
 suppression-resistant effector cell population. *Arthritis Rheum.* 65, 1922-1933 (2013).
 - ⁴⁵⁷ 68 Bunch, D. O. *et al.* Decreased CD5(+) B cells in active ANCA vasculitis and relapse
 ⁴⁵⁸ after rituximab. *Clin. J. Am. Soc. Nephrol.* **8**, 382-391 (2013).
 - Wilde, B. *et al.* Regulatory B cells in ANCA-associated vasculitis. *Ann. Rheum. Dis.* 72, 1416-1419 (2013).
 - Free, M. E. *et al.* Restricted myeloperoxidase epitopes drive the adaptive immune
 response in MPO-ANCA vasculitis. *J. Autoimm.* 106, 102306 (2020).
 - ⁴⁶³ 71 Ooi, J. D. *et al.* The immunodominant myeloperoxidase T-cell epitope induces local
 ⁴⁶⁴ cell-mediated injury in antimyeloperoxidase glomerulonephritis. *Proc. Natl. Acad.* ⁴⁶⁵ Sci. USA 109, E2615-2624 (2012).

Uses experimental models to demonstrate the role of MPO-specific CD4⁺ T cells in
 effector responses and define a nephritogenic MPO T cell epitope.

- Roth, A. J. *et al.* Epitope specificity determines pathogenicity and detectability in
 ANCA-associated vasculitis. *J. Clin. Invest.* **123**, 1773-1783 (2013).
- Chang, J. *et al.* CD8+ T Cells Effect Glomerular Injury in Experimental AntiMyeloperoxidase GN. *J. Am. Soc. Nephrol.* 28, 47-55 (2017).

472	74	Falk, R. J., Becker, M., Terrell, R. & Jennette, J. C. Anti-myeloperoxidase
473		autoantibodies react with native but not denatured myeloperoxidase. Clin. Exp.
474		Immunol. 89, 274-278 (1992).
475	75	Bini, P. et al. Antineutrophil cytoplasmic autoantibodies in Wegener's granulomatosis
476		recognize conformational epitope(s) on proteinase 3. J. Immunol. 149, 1409-1415
477		(1992).
478	76	Audrain, M. A. et al. Anti-native and recombinant myeloperoxidase monoclonals and
479		human autoantibodies. Clin. Exp. Immunol. 107, 127-134 (1997).
480	77	Nagai, M. et al. Serum levels of BAFF and APRIL in myeloperoxidase anti-
481		neutrophil cytoplasmic autoantibody-associated renal vasculitis: association with
482		disease activity. Nephron Clin. Pract. 118, c339-345 (2011).
483	78	Holden, N. J. et al. ANCA-stimulated neutrophils release BLyS and promote B cell
484		survival: a clinically relevant cellular process. Ann. Rheum. Dis. 70, 2229-2233
485		(2011).
486	79	Oleinika, K., Mauri, C. & Salama, A. D. Effector and regulatory B cells in immune-
487		mediated kidney disease. Nat. Rev. Nephrol. 15, 11-26 (2019).
488	80	Steinmetz, O. M. et al. Analysis and classification of B-cell infiltrates in lupus and
489		ANCA-associated nephritis. Kidney Int. 74, 448-457 (2008).
490	81	Kelley, J. M. et al. IgA and IgG antineutrophil cytoplasmic antibody engagement of
491		Fc receptor genetic variants influences granulomatosis with polyangiitis. Proc. Natl.
492		Acad. Sci. USA 108, 20736-20741 (2011).
493	82	Jayne, D. R. et al. Severe pulmonary hemorrhage and systemic vasculitis in
494		association with circulating anti-neutrophil cytoplasm antibodies of IgM class only.
495		<i>Clin. Nephrol.</i> 32 , 101-106 (1989).
496	83	Falk, R. J., Terrell, R. S., Charles, L. A. & Jennette, J. C. Anti-neutrophil cytoplasmic
497		autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro.
498		Proc. Natl. Acad. Sci. USA 87, 4115-4119 (1990).
499	Links	ANCAs to the pathogenesis of AAV by demonstrating that ANCAs activate
500	neutro	ophils in vitro.
501	84	Williams, J. M. et al. Activation of the G(i) heterotrimeric G protein by ANCA IgG
502		F(ab')2 fragments is necessary but not sufficient to stimulate the recruitment of those
503		downstream mediators used by intact ANCA IgG. J. Am. Soc. Nephrol. 14, 661-669
504		(2003).

505	85	Hewins, P., Williams, J. M., Wakelam, M. J. & Savage, C. O. Activation of Syk in
506		neutrophils by antineutrophil cytoplasm antibodies occurs via Fcgamma receptors and
507		CD18. J. Am. Soc. Nephrol. 15, 796-808 (2004).
508	86	Johnson, P. A., Alexander, H. D., McMillan, S. A. & Maxwell, A. P. Up-regulation of
509		the granulocyte adhesion molecule Mac-1 by autoantibodies in autoimmune
510		vasculitis. Clin. Exp. Immunol. 107, 513-519 (1997).
511	87	Kuligowski, M. P. et al. Antimyeloperoxidase antibodies rapidly induce alpha-4-
512		integrin-dependent glomerular neutrophil adhesion. Blood 113, 6485-6494 (2009).
513	88	Tse, W. Y., Nash, G. B., Hewins, P., Savage, C. O. & Adu, D. ANCA-induced
514		neutrophil F-actin polymerization: implications for microvascular inflammation.
515		Kidney Int. 67, 130-139 (2005).
516	89	Jennette, J. C. & Nachman, P. H. ANCA Glomerulonephritis and Vasculitis. Clin. J.
517		Am. Soc. Nephrol. 12, 1680-1691 (2017).
518	90	Hong, Y. et al. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil
519		microparticles. J. Am. Soc. Nephrol. 23, 49-62 (2012).
520	91	Xiao, H. et al. Antineutrophil cytoplasmic autoantibodies specific for
521		myeloperoxidase cause glomerulonephritis and vasculitis in mice. J. Clin. Invest. 110,
522		955-963 (2002).
523	A key	study that uses experimental models to demonstrate the pathogenicity of anti-
524	MPO	antibodies <i>in vivo</i> .
525	92	Bansal, P. J. & Tobin, M. C. Neonatal microscopic polyangiitis secondary to transfer
526		of maternal myeloperoxidase-antineutrophil cytoplasmic antibody resulting in
527		neonatal pulmonary hemorrhage and renal involvement. Ann. Allergy Asthma
528		Immunol. 93, 398-401 (2004).
529	93	Xiao, H. et al. The role of neutrophils in the induction of glomerulonephritis by anti-
530		myeloperoxidase antibodies. Am. J. Pathol. 167, 39-45 (2005).
531	94	Pfister, H. et al. Antineutrophil cytoplasmic autoantibodies against the murine
532		homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo. Blood 104,
533		1411-1418 (2004).
534	95	Little, M. A. et al. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies
535		recapitulate systemic vasculitis in mice with a humanized immune system. PLos One
536		7 , e28626 (2012).

537	96	Charles, L. A., Falk, R. J. & Jennette, J. C. Reactivity of antineutrophil cytoplasmic
538		autoantibodies with mononuclear phagocytes. J. Leuk. Biol. 51, 65-68 (1992).
539	97	O'Brien, E. C. et al. Intermediate monocytes in ANCA vasculitis: increased surface
540		expression of ANCA autoantigens and IL-1beta secretion in response to anti-MPO
541		antibodies. Sci. Rep. 5, 11888 (2015).
542	98	Peschel, A. et al. Autoantibodies to hLAMP-2 in ANCA-negative pauci-immune
543		focal necrotizing GN. J. Am. Soc. Nephrol. 25, 455-463 (2014).
544	99	Espy, C. et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the
545		activity of granulomatosis with polyangiitis (Wegener's). Arthritis Rheum. 63, 2105-
546		2115 (2011).
547	100	Lardinois, O. M. et al. Immunoglobulins G from patients with ANCA-associated
548		vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation
549		to disease activity. PLos One 14, e0213215 (2019).
550	101	Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73-79
551		(2018).
552	102	Ciavatta, D. J. et al. Epigenetic basis for aberrant upregulation of autoantigen genes in
553		humans with ANCA vasculitis. J. Clin. Invest. 120, 3209-3219 (2010).
554	103	Ohlsson, S. M. et al. Neutrophils from vasculitis patients exhibit an increased
555		propensity for activation by anti-neutrophil cytoplasmic antibodies. Clin. Exp.
556		Immunol. 176, 363-372 (2014).
557	104	Ohlsson, S. et al. Neutrophils from ANCA-associated vasculitis patients show an
558		increased capacity to activate the complement system via the alternative pathway after
559		ANCA stimulation. PLos One 14, e0218272 (2019).
560	105	Summers, S. A. et al. Intrinsic renal cell and leukocyte-derived TLR4 aggravate
561		experimental anti-MPO glomerulonephritis. Kidney Int. 78, 1263-1274 (2010).
562	106	Tadema, H. et al. Bacterial DNA motifs trigger ANCA production in ANCA-
563		associated vasculitis in remission. Rheumatology 50, 689-696 (2011).
564	107	Holle, J. U. et al. Toll-like receptor TLR2 and TLR9 ligation triggers neutrophil
565		activation in granulomatosis with polyangiitis. Rheumatology 52, 1183-1189 (2013).
566	108	Wang, C. et al. High mobility group box 1 contributes to anti-neutrophil cytoplasmic
567		antibody-induced neutrophils activation through receptor for advanced glycation end
568		products (RAGE) and Toll-like receptor 4. Arthritis Res. Ther. 17, 64 (2015).
569	109	Xiao, H. et al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J.
570		Am. Soc. Nephrol. 25, 225-231 (2014).

571	110	Jayne, D. R. W. et al. Randomized Trial of C5a Receptor Inhibitor Avacopan in
572		ANCA-Associated Vasculitis. J. Am. Soc. Nephrol. 28, 2756-2767 (2017).
573	111	Merkel, P. A. et al. A randomised, double-blind, active-controlled study of Avacopan
574		in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Ann. Rheum.
575		Dis. 79 (Suppl 1), 8 (2020).
576	112	Xiao, H., Schreiber, A., Heeringa, P., Falk, R. J. & Jennette, J. C. Alternative
577		complement pathway in the pathogenesis of disease mediated by anti-neutrophil
578		cytoplasmic autoantibodies. Am. J. Pathol. 170, 52-64 (2007).
579	113	Huugen, D. et al. Inhibition of complement factor C5 protects against anti-
580		myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 71, 646-
581		654 (2007).
582	114	Hao, J., Meng, L. Q., Xu, P. C., Chen, M. & Zhao, M. H. p38MAPK, ERK and PI3K
583		signaling pathways are involved in C5a-primed neutrophils for ANCA-mediated
584		activation. PLos One 7, e38317 (2012).
585	115	Dick, J. et al. C5a receptor 1 promotes autoimmunity, neutrophil dysfunction and
586		injury in experimental anti-myeloperoxidase glomerulonephritis. Kidney Int. 93, 615-
587		625 (2018).
588	116	Freeley, S. J. et al. Experimentally-induced anti-myeloperoxidase vasculitis does not
589		require properdin, MASP-2 or bone marrow-derived C5. J. Pathol. 240, 61-71 (2016).
590	117	Gou, S. J., Yuan, J., Wang, C., Zhao, M. H. & Chen, M. Alternative complement
591		pathway activation products in urine and kidneys of patients with ANCA-associated
592		GN. Clin. J. Am. Soc. Nephrol. 8, 1884-1891 (2013).
593	118	Chen, M., Jayne, D. R. W. & Zhao, M. H. Complement in ANCA-associated
594		vasculitis: mechanisms and implications for management. Nat. Rev. Nephrol. 13, 359-
595		367 (2017).
596	119	Manenti, L. et al. Association of Serum C3 Concentration and Histologic Signs of
597		Thrombotic Microangiopathy with Outcomes among Patients with ANCA-Associated
598		Renal Vasculitis. Clin. J. Am. Soc. Nephrol. 10, 2143-2151 (2015).
599	120	Augusto, J. F. et al. Low Serum Complement C3 Levels at Diagnosis of Renal
600		ANCA-Associated Vasculitis Is Associated with Poor Prognosis. PLos One 11,
601		e0158871 (2016).
602	121	Calderwood, J. W., Williams, J. M., Morgan, M. D., Nash, G. B. & Savage, C. O.
603		ANCA induces beta2 integrin and CXC chemokine-dependent neutrophil-endothelial

604		cell interactions that mimic those of highly cytokine-activated endothelium. J. Leuk.
605		<i>Biol.</i> 77, 33-43 (2005).
606	122	Little, M. A. et al. Antineutrophil cytoplasm antibodies directed against
607		myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood 106,
608		2050-2058 (2005).
609	123	Nolan, S. L. et al. Mechanisms of ANCA-mediated leukocyte-endothelial cell
610		interactions in vivo. J. Am. Soc. Nephrol. 19, 973-984 (2008).
611	124	Brouwer, E. et al. Predominance of IgG1 and IgG4 subclasses of anti-neutrophil
612		cytoplasmic autoantibodies (ANCA) in patients with Wegener's granulomatosis and
613		clinically related disorders. Clin. Exp. Immunol. 83, 379-386 (1991).
614	125	Abdulahad, W. H. et al. Increased frequency of circulating IL-21 producing Th-cells
615		in patients with granulomatosis with polyangiitis (GPA). Arthritis Res. Ther. 15, R70
616		(2013).
617	126	Abdulahad, W. H., Kallenberg, C. G., Limburg, P. C. & Stegeman, C. A. Urinary
618		CD4+ effector memory T cells reflect renal disease activity in antineutrophil
619		cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 60, 2830-2838 (2009).
620	127	Gephardt, G. N., Ahmad, M. & Tubbs, R. R. Pulmonary vasculitis (Wegener's
621		granulomatosis). Immunohistochemical study of T and B cell markers. Am. J. Med.
622		74 , 700-704 (1983).
623	128	Weidner, S., Carl, M., Riess, R. & Rupprecht, H. D. Histologic analysis of renal
624		leukocyte infiltration in antineutrophil cytoplasmic antibody-associated vasculitis:
625		importance of monocyte and neutrophil infiltration in tissue damage. Arthritis Rheum.
626		50 , 3651-3657 (2004).
627	129	O'Sullivan, K. M. et al. Renal participation of myeloperoxidase in antineutrophil
628		cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int. 88, 1030-
629		1046 (2015).
630	130	Ludviksson, B. R. et al. Active Wegener's granulomatosis is associated with HLA-
631		DR+ CD4+ T cells exhibiting an unbalanced Th1-type T cell cytokine pattern:
632		reversal with IL-10. J. Immunol. 160, 3602-3609 (1998).
633	131	Nogueira, E. et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells
634		are elevated in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant.
635		25 , 2209-2217 (2010).

636	132	Csernok, E. et al. Cytokine profiles in Wegener's granulomatosis: predominance of
637		type 1 (Th1) in the granulomatous inflammation. Arthritis Rheum. 42, 742-750
638		(1999).
639	133	Chanouzas, D. et al. The host cellular immune response to cytomegalovirus targets
640		the endothelium and is associated with increased arterial stiffness in ANCA-
641		associated vasculitis. Arthritis Res. Ther. 20, 194 (2018).
642	134	Chanouzas, D. et al. Subclinical Reactivation of Cytomegalovirus Drives
643		CD4+CD28null T-Cell Expansion and Impaired Immune Response to Pneumococcal
644		Vaccination in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. J Infect.
645		Dis. 219, 234-244 (2019).
646	135	McKinney, E. F. et al. A CD8+ T cell transcription signature predicts prognosis in
647		autoimmune disease. Nat. Med. 16, 586-591, 581p following 591 (2010).
648	Ident	ifes ${f CD8}^+$ T cell transcription signatures that correlate with risk of remaining in
649	remis	sion or to flare in AAV, leading to prospective biomarker studies.
650	136	McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T-cell
651		exhaustion, co-stimulation and clinical outcome in autoimmunity and infection.
652		<i>Nature</i> 523 , 612-616 (2015).
653	137	Bajema, I. M., Hagen, E. C., de Heer, E., van der Woude, F. J. & Bruijn, J. A.
654		Colocalization of ANCA-antigens and fibrinoid necrosis in ANCA-associated
655		vasculitis. Kidney Int. 60, 2025-2030 (2001).
656	138	Gan, P. Y. et al. Biologicals targeting T helper cell subset differentiating cytokines
657		are effective in the treatment of murine anti-myeloperoxidase glomerulonephritis.
658		<i>Kidney Int.</i> 96 , 1121-1133 (2019).
659	139	Rousselle, A., Kettritz, R. & Schreiber, A. Monocytes Promote Crescent Formation in
660		Anti-Myeloperoxidase Antibody-Induced Glomerulonephritis. Am. J. Pathol. 187,
661		1908-1915 (2017).
662	140	Terrier, B. et al. Interleukin-25: a cytokine linking eosinophils and adaptive immunity
663		in Churg-Strauss syndrome. <i>Blood</i> 116 , 4523-4531 (2010).
664	141	Kiene, M. et al. Elevated interleukin-4 and interleukin-13 production by T cell lines
665		from patients with Churg-Strauss syndrome. Arthritis Rheum. 44, 469-473 (2001).
666	142	Jakiela, B. et al. Increased production of IL-5 and dominant Th2-type response in
667		airways of Churg-Strauss syndrome patients. Rheumatology 51, 1887-1893 (2012).

668	143	Wechsler, M. E. et al. Mepolizumab or Placebo for Eosinophilic Granulomatosis with
669		Polyangiitis. N. Eng. J. Med. 376, 1921-1932 (2017).
670	A clin	ical trial that demonstrates that the anti-IL-5 therapy mepolizumab is an effective
671	treatr	nent for EGPA.
672	144	Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference
673		Nomenclature of Vasculitides. Arthritis Rheum. 65, 1-11 (2013).
674	A key	v classification paper that provides definitive definitions for each type of vasculitis.
675	145	Watts, R. A. & Robson, J. Introduction, epidemiology and classification of vasculitis.
676		Best Pract. Res. Clin. Rheumat. 32, 3-20 (2018).
677	146	Luqmani, R. A., Suppiah, R., Grayson, P. C., Merkel, P. A. & Watts, R.
678		Nomenclature and classification of vasculitis - update on the ACR/EULAR diagnosis
679		and classification of vasculitis study (DCVAS). Clin. Exp. Immunol. 164 Suppl 1, 11-
680		13 (2011).
681	147	Kariv, R., Sidi, Y. & Gur, H. Systemic vasculitis presenting as a tumorlike lesion.
682		Four case reports and an analysis of 79 reported cases. Medicine 79, 349-359 (2000).
683	148	Jennette, J. C. & Falk, R. J. Small-vessel vasculitis. N. Eng. J. Med. 337, 1512-1523
684		(1997).
685	Revie	ws clinical and other aspects of small vessel vasculitides, including AAVs.
686	149	Borie, R. & Crestani, B. Antineutrophil Cytoplasmic Antibody-Associated Lung
687		Fibrosis. Sem. Res. Crit. Care Med. 39, 465-470 (2018).
688	150	Furuta, S. et al. Comparison of phenotype and outcome in microscopic polyangiitis
689		between Europe and Japan. J. Rheumatol. 41, 325-333 (2014).
690	151	Suzuki, A. et al. Chest High-Resolution CT Findings of Microscopic Polyangiitis: A
691		Japanese First Nationwide Prospective Cohort Study. AJR Am. J. Roentgenol. April
692		11:1-11 (2019).
693	152	McAdoo, S. P. et al. Patients double-seropositive for ANCA and anti-GBM
694		antibodies have varied renal survival, frequency of relapse, and outcomes compared
695		to single-seropositive patients. Kidney Int. 92, 693-702 (2017).
696	153	Turner-Stokes, T. et al. Positive antineutrophil cytoplasmic antibody serology in
697		patients with lupus nephritis is associated with distinct histopathologic
698		features on renal biopsy. Kidney Int. 92, 1223-1231 (2017).
699	154	Anders, H. J. et al. MPO-ANCA-Positive crescentic glomerulonephritis: a distinct
700		entity of scleroderma renal disease? Am. J. Kidney Dis. 33, e3 (1999).

701	155	Quéméneur, T. et al. Systemic vasculitis during the course of systemic sclerosis:
702		report of 12 cases and review of the literature. Medicine 92, 1-9 (2013).
703	156	Iudici, M. et al. Childhood- versus adult-onset ANCA-associated vasculitides: A
704		nested, matched case-control study from the French Vasculitis Study Group Registry.
705		Autoimmun. Rev. 17, 108-114 (2018).
706	157	Antonelou, M., Perea Ortega, L., Harvey, J. & Salama, A. D. Anti-myeloperoxidase
707		antibody positivity in patients without primary systemic vasculitis. Clin. Exp.
708		Rheumatol. 37 Suppl 117, 86-89 (2019).
709	158	Berti, A. et al. Brief Report: Circulating Cytokine Profiles and Antineutrophil
710		Cytoplasmic Antibody Specificity in Patients With Antineutrophil Cytoplasmic
711		Antibody-Associated Vasculitis. Arthritis Rheum. 70, 1114-1121 (2018).
712	159	Unizony, S. et al. Clinical outcomes of treatment of anti-neutrophil cytoplasmic
713		antibody (ANCA)-associated vasculitis based on ANCA type. Ann. Rheum. Dis. 75,
714		1166-1169 (2016).
715	160	Cornec, D., Cornec-Le Gall, E., Fervenza, F. C. & Specks, U. ANCA-associated
716		vasculitis - clinical utility of using ANCA specificity to classify patients. Nat. Rev.
717		Rheumatol. 12, 570-579 (2016).
718	161	Bossuyt, X. et al. Position paper: Revised 2017 international consensus on testing of
719		ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat. Rev.
720		Rheumatol. 13, 683-692 (2017).
721	Conte	emporary recommendations on ANCA testing methods and procedures in
722	suspe	cted AAV.
723	162	Venhoff, N. et al. Reconstitution of the peripheral B lymphocyte compartment in
724		patients with ANCA-associated vasculitides treated with rituximab for relapsing or
725		refractory disease. Autoimmunity 47, 401-408 (2014).
726	163	von Borstel, A. et al. CD27(+)CD38(hi) B Cell Frequency During Remission Predicts
727		Relapsing Disease in Granulomatosis With Polyangiitis Patients. Front. Immunol. 10,
728		2221 (2019).
729	164	O'Reilly, V. P. et al. Urinary Soluble CD163 in Active Renal Vasculitis. J. Am. Soc.
730		Nephrol. 27, 2906-2916 (2016).
731	This s	study identifies soluble urinary CD163 as a potential biomarker for renal flares of
732	AAV.	

733	165	Tedesco, M., Gallieni, M., Pellegata, F., Cozzolino, M. & Alberici, F. Update on
734		ANCA-associated vasculitis: from biomarkers to therapy. J. Nephrol. 32, 871-882
735		(2019).
736	166	Dekkema, G. J. et al. Urinary and serum soluble CD25 complements urinary soluble
737		CD163 to detect active renal anti-neutrophil cytoplasmic autoantibody-associated
738		vasculitis: a cohort study. Nephrol. Dial. Transplant. 34, 234-242 (2019).
739	167	Ponte, C., Agueda, A. F. & Luqmani, R. A. Clinical features and structured clinical
740		evaluation of vasculitis. Best Pract. Res. Clin. Rheumatol. 32, 31-51 (2018).
741	168	Mukhtyar, C. et al. Modification and validation of the Birmingham Vasculitis
742		Activity Score (version 3). Ann. Rheum. Dis. 68, 1827-1832 (2009).
743	An uj	pdate of the BVAS, which is widely used in clinical trials to assess disease activity.
744	169	Hellmich, B. et al. EULAR recommendations for conducting clinical studies and/or
745		clinical trials in systemic vasculitis: focus on anti-neutrophil cytoplasm antibody-
746		associated vasculitis. Ann. Rheum. Dis. 66, 605-617 (2007).
747	170	Guillevin, L. et al. The Five-Factor Score revisited: assessment of prognoses of
748		systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG)
749		cohort. <i>Medicine</i> 90 , 19-27 (2011).
750	171	Exley, A. R. et al. Development and initial validation of the Vasculitis Damage Index
751		for the standardized clinical assessment of damage in the systemic vasculitides.
752		Arthritis Rheum. 40, 371-380 (1997).
753	172	Merkel, P. A. et al. The OMERACT core set of outcome measures for use in clinical
754		trials of ANCA-associated vasculitis. J. Rheumatol. 38, 1480-1486 (2011).
755	173	Morgan, M. D. et al. Increased incidence of cardiovascular events in patients with
756		antineutrophil cytoplasmic antibody-associated vasculitides: a matched-pair cohort
757		study. Arthritis Rheum. 60, 3493-3500 (2009).
758	174	Robson, J. et al. Damage in the anca-associated vasculitides: long-term data from the
759		European vasculitis study group (EUVAS) therapeutic trials. Ann. Rheum. Dis. 74,
760		177-184 (2015).
761	175	Emmi, G. et al. Thrombosis in vasculitis: from pathogenesis to treatment. Thromb. J.
762		13 , 15 (2015).
763	176	Merkel, P. A. et al. Brief communication: high incidence of venous thrombotic events
764		among patients with Wegener granulomatosis: the Wegener's Clinical Occurrence of
765		Thrombosis (WeCLOT) Study. Ann. Int. Med. 142, 620-626 (2005).

766	177	Whyte, A. F., Smith, W. B., Sinkar, S. N., Kette, F. E. & Hissaria, P. Clinical and
767		laboratory characteristics of 19 patients with Churg-Strauss syndrome from a single
768		South Australian centre. Int. Med. J. 43, 784-790 (2013).
769	178	Mohammad, A. J. et al. Pulmonary Involvement in Antineutrophil Cytoplasmic
770		Antibodies (ANCA)-associated Vasculitis: The Influence of ANCA Subtype. J.
771		Rheumatol. 44, 1458-1467 (2017).
772	179	Quinn, K. A. et al. Subglottic stenosis and endobronchial disease in granulomatosis
773		with polyangiitis. Rheumatology 58, 2203-2211 (2019).
774	180	Churg, A. in Oxford Textbook of Vasculitis (eds G. V. Ball, B. J. Fessler, & S. L.
775		Bridges) Ch. 9, 101-108, Oxford University Press (2014).
776	181	Berden, A. E. et al. Histopathologic classification of ANCA-associated
777		glomerulonephritis. J. Am. Soc. Nephrol. 21, 1628-1636 (2010).
778	A clas	ssification system based on glomerular histopathology, which is associated with the
779	outco	me of renal disease in AAV.
780	182	Rahmattulla, C., Bruijn, J. A. & Bajema, I. M. Histopathological classification of
781		antineutrophil cytoplasmic antibody-associated glomerulonephritis: an update. Curr
782		Opin. Nephrol. Hyperten. 23, 224-231 (2014).
783	183	Brix, S. R. et al. Development and validation of a renal risk score in ANCA-
784		associated glomerulonephritis. Kidney Int. 94, 1177-1188 (2018).
785	184	Zhang, S., Yuan, D. & Tan, G. Neurological Involvement in Primary Systemic
786		Vasculitis. Front. Neurol. 10, 430 (2019).
787	185	Flossmann, O. et al. Long-term patient survival in ANCA-associated vasculitis. Ann.
788		Rheum. Dis. 70, 488-494 (2011).
789	186	Rhee, R. L. et al. Trends in Long-Term Outcomes Among Patients With
790		Antineutrophil Cytoplasmic Antibody-Associated Vasculitis With Renal Disease.
791		Arthritis Rheum. 68, 1711-1720 (2016).
792	187	Steinberg, A. W., Wechsler, M. E. & Fernandez Perez, E. R. Trends in Antineutrophil
793		Cytoplasmic Autoantibody-Associated Vasculitis-Related Mortality in the United
794		States, 1999 to 2017. Ann. Int. Med. (2019).
795	188	Scherlinger, M. et al. Worldwide trends in all-cause mortality of auto-immune
796		systemic diseases between 2001 and 2014. Autoimmun. Rev. 19, 102531 (2020).

797	189	Hogan, S. L. et al. Predictors of relapse and treatment resistance in antineutrophil
798		cytoplasmic antibody-associated small-vessel vasculitis. Ann. Int. Med. 143, 621-631
799		(2005).
800	190	Gopaluni, S. et al. Effect of Disease Activity at Three and Six Months After
801		Diagnosis on Long-Term Outcomes in Antineutrophil Cytoplasmic Antibody-
802		Associated Vasculitis. Arthritis Rheum. 71, 784-791 (2019).
803	191	Walsh, M. et al. Plasma Exchange and Glucocorticoids in Severe ANCA-Associated
804		Vasculitis. N. Eng. J. Med. 382, 622-631 (2020).
805	A clin	nical trial of induction therapies in severe AAV that demonstrates that lower-dose
806	gluco	corticoids are non-inferior to standard doses and that routine use of plasma
807	excha	ange as adjuvant provides no additional benefit.
808	192	Smith, R., Jayne, D. & Merkel, P. A. randomized, controlled trial of rituximab versus
809		azathioprine after induction of remission with rituximab for patients with ANCA-
810		associated vasculitis and relapsing disease. Arthritis Rheum. 71 (Suppl 10) (2019).
811	193	de Groot, K. et al. Pulse versus daily oral cyclophosphamide for induction of
812		remission in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized
813		trial. Ann. Int. Med. 150, 670-680 (2009).
814	194	Harper, L. et al. Pulse versus daily oral cyclophosphamide for induction of remission
815		in ANCA-associated vasculitis: long-term follow-up. Ann. Rheum. Dis. 71, 955-960
816		(2012).
817	195	Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated
818		vasculitis. N. Eng. J. Med. 363, 221-232 (2010).
819	A clin	nical trial that demonstrates that rituximab is at least equivalent to
820	cylop	hosphamide in the induction of remission in AAV.
821	196	Specks, U. et al. Efficacy of remission-induction regimens for ANCA-associated
822		vasculitis. N. Eng. J. Med. 369, 417-427 (2013).
823	197	Jones, R. B. et al. Rituximab versus cyclophosphamide in ANCA-associated renal
824		vasculitis. N. Eng. J. Med. 363, 211-220 (2010).
825	198	Pepper, R. J. et al. A novel glucocorticoid-free maintenance regimen for anti-
826		neutrophil cytoplasm antibody-associated vasculitis. Rheumatology 58, 260-268
827		(2019).

828	199	De Groot, K. et al. Randomized trial of cyclophosphamide versus methotrexate for
829		induction of remission in early systemic antineutrophil cytoplasmic antibody-
830		associated vasculitis. Arthritis Rheum. 52, 2461-2469 (2005).
831	200	Jones, R. B. et al. Mycophenolate mofetil versus cyclophosphamide for remission
832		induction in ANCA-associated vasculitis: a randomised, non-inferiority trial. Ann.
833		Rheum. Dis. 78, 399-405 (2019).
834	201	Jayne, D. R. et al. Randomized trial of plasma exchange or high-dosage
835		methylprednisolone as adjunctive therapy for severe renal vasculitis. J. Am. Soc.
836		Nephrol. 18, 2180-2188 (2007).
837	202	Jayne, D. R. et al. Intravenous immunoglobulin for ANCA-associated systemic
838		vasculitis with persistent disease activity. QJM 93, 433-439 (2000).
839	203	Guillevin, L. et al. Rituximab versus azathioprine for maintenance in ANCA-
840		associated vasculitis. N. Eng. J. Med. 371, 1771-1780 (2014).
841	A clin	nical trial demonstrating that rituximab is a viable treatment and superior to
842	azath	ioprine in the maintenance of remission in AAV.
843	204	Karras, A. et al. Randomised controlled trial of prolonged treatment in the remission
844		phase of ANCA-associated vasculitis. Ann. Rheum. Dis. 76, 1662-1668 (2017).
845	205	Charles, P. et al. Long-Term Rituximab Use to Maintain Remission of Antineutrophil
846		Cytoplasmic Antibody-Associated Vasculitis: A Randomized Trial. Ann. Int. Med.
847		Jun 2. doi:10.7326/M19-3827, online ahead of print. (2020).
848	206	Gopaluni, S. et al. Rituximab versus azathioprine as therapy for maintenance of
849		remission for anti-neutrophil cytoplasm antibody-associated vasculitis
850		(RITAZAREM): study protocol for a randomized controlled trial. Trials 18, 112
851		(2017).
852	207	Tieu, J. et al. Rituximab for maintenance of remission in ANCA-associated vasculitis:
853		expert consensus guidelines. Rheumatology 59, e24-e32 (2020).
854	208	Charles, P. et al. Comparison of individually tailored versus fixed-schedule rituximab
855		regimen to maintain ANCA-associated vasculitis remission: results of a multicentre,
856		randomised controlled, phase III trial (MAINRITSAN2). Ann. Rheum. Dis. 77, 1143-
857		1149 (2018).
858	209	Puechal, X. et al. Adding Azathioprine to Remission-Induction Glucocorticoids for
859		Eosinophilic Granulomatosis With Polyangiitis (Churg-Strauss), Microscopic
860		Polyangiitis, or Polyarteritis Nodosa Without Poor Prognosis Factors: A Randomized,
-----	-----	---
861		Controlled Trial. Arthritis Rheum. 69, 2175-2186 (2017).
862	210	Steinfeld, J. et al. Evaluation of clinical benefit from treatment with mepolizumab for
863		patients with eosinophilic granulomatosis with polyangiitis. J Allergy Clin Immmunol
864		143 , 2170-2177 (2019).
865	211	Teixeira, V., Mohammad, A. J., Jones, R. B., Smith, R. & Jayne, D. Efficacy and
866		safety of rituximab in the treatment of eosinophilic granulomatosis with polyangiitis.
867		<i>RMD Open</i> 5 , e000905 (2019).
868	212	Roberts, D. M. et al. Immunoglobulin G replacement for the treatment of infective
869		complications of rituximab-associated hypogammaglobulinemia in autoimmune
870		disease: a case series. J Autoimmun. 57, 24-29 (2015).
871	213	De Sousa, E., Smith, R., Chaudhry, A., Willcocks, L. & Jayne, D. Venous
872		thromboembolism with concurrent pulmonary haemorrhage in systemic vasculitis.
873		Nephrol. Dial. Transplant. 27, 4357-4361 (2012).
874	214	Suppiah, R. et al. A model to predict cardiovascular events in patients with newly
875		diagnosed Wegener's granulomatosis and microscopic polyangiitis. Arthritis Care
876		<i>Res.</i> 63 , 588-596 (2011).
877	215	Westman, K. W., Bygren, P. G., Olsson, H., Ranstam, J. & Wieslander, J. Relapse
878		rate, renal survival, and cancer morbidity in patients with Wegener's granulomatosis
879		or microscopic polyangiitis with renal involvement. J. Am. Soc. Nephrol. 9, 842-852
880		(1998).
881	216	Heijl, C. et al. Incidence of malignancy in patients treated for antineutrophil
882		cytoplasm antibody-associated vasculitis: follow-up data from European Vasculitis
883		Study Group clinical trials. Ann. Rheum. Dis. 70, 1415-1421 (2011).
884	217	van Daalen, E. E. et al. Effect of rituximab on malignancy risk in patients with
885		ANCA-associated vasculitis. Ann. Rheum. Dis. 76, 1064-1069 (2017).
886	218	Buckley, L. & Humphrey, M. B. Glucocorticoid-Induced Osteoporosis. N. Eng. J.
887		Med. 379 , 2547-2556 (2018).
888	219	Martinez Del Pero, M., Jayne, D., Chaudhry, A., Sivasothy, P. & Jani, P. Long-term
889		outcome of airway stenosis in granulomatosis with polyangiitis (Wegener
890		granulomatosis): an observational study. JAMA Otolaryngol. Head Neck Surg. 140,
891		1038-1044 (2014).
892	220	Hruskova, Z. et al. Characteristics and Outcomes of Granulomatosis With
893		Polyangiitis (Wegener) and Microscopic Polyangiitis Requiring Renal Replacement

894		Therapy: Results From the European Renal Association-European Dialysis and
895		Transplant Association Registry. Am. J. Kidney Dis. 66, 613-620 (2015).
896	221	Herlyn, K., Hellmich, B., Seo, P., Merkel, P. A. & Consortium, V. C. R. Patient-
897		Reported Outcome Assessment in Vasculitis May Provide Important Data and a
898		Unique Perspective. Arthritis Care Res. 62, 1639-1645 (2010).
899	222	Robson, J. C. et al. Patient perceptions of glucocorticoids in anti-neutrophil
900		cytoplasmic antibody-associated vasculitis. Rheumatol. Int. 38, 675-682 (2018).
901	A stuc	ly reporting the effects of glucocorticoids in AAV, both positive and negative,
902	from	the patients' perspective.
903	223	Miloslavsky, E. M. et al. Development of a Glucocorticoid Toxicity Index (GTI)
904		using multicriteria decision analysis. Ann. Rheum. Dis. 76, 543-546 (2017).
905	224	Robson, J. C. et al. Validation of the ANCA-associated vasculitis patient-reported
906		outcomes (AAV-PRO) questionnaire. Ann. Rheum. Dis. 77, 1157-1164 (2018).
907	Valida	ation study of an AAV-specific patient-reported outcome measure.
908	225	Robson, J. C. et al. OMERACT Endorsement of Patient-reported Outcome
909		Instruments in Antineutrophil Cytoplasmic Antibody-associated Vasculitis. J.
910		Rheumatol. 44, 1529-1535 (2017).
911	226	O'Malley, L. et al. The Longitudinal Course of Fatigue in Antineutrophil Cytoplasmic
912		Antibody-associated Vasculitis. J. Rheumatol. 47, 572-579 (2020).
913	This s	tudy defines the incidence and time course of fatigue, an important symptom for
914	patien	its with AAV.
915	227	Hessels, A. C. et al. Leg muscle strength is reduced and is associated with physical
916		quality of life in Antineutrophil cytoplasmic antibody-associated vasculitis. PLos One
917		14 (2019).
918	228	Harper, L. et al. Treatment of fatigue with physical activity and behavioural change
919		support in vasculitis: study protocol for an open-label randomised controlled
920		feasibility study. BMJ Open 8, e023769 (2018).
921	229	Moran, S. M. et al. Urinary soluble CD163 and monocyte chemoattractant protein-1
922		in the identification of subtle renal flare in anti-neutrophil cytoplasmic antibody-
923		associated vasculitis. Nephrol. Dial. Transplant. 35, 283-291 (2020).
924	230	Pagnoux, C. et al. Treatment of systemic necrotizing vasculitides in patients aged
925		sixty-five years or older: results of a multicenter, open-label, randomized controlled

trial of corticosteroid and cyclophosphamide-based induction therapy. Arthritis 926 Rheum. 67, 1117-1127 (2015). 927 231 Jones, R. B. et al. Rituximab versus cyclophosphamide in ANCA-associated renal 928 vasculitis: 2-year results of a randomised trial. Ann. Rheum. Dis. 74, 1178-1182 929 (2015). 930 232 Walsh, M. et al. Long-term follow-up of patients with severe ANCA-associated 931 vasculitis comparing plasma exchange to intravenous methylprednisolone treatment is 932 unclear. Kidney Int. 84, 397-402 (2013). 933 233 Merkel, P. A., Jayne, D. R., Wang, C., Hillson, J. & Bekker, P. Evaluation of the 934 Safety and Efficacy of Avacopan, a C5a Receptor Inhibitor, in Patients With 935 Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Treated Concomitantly 936 With Rituximab or Cyclophosphamide/Azathioprine: Protocol for a Randomized, 937 Double-Blind, Active-Controlled, Phase 3 Trial. JMIR Res. Protoc. 9, e16664 (2020). 938 234 Faurschou, M. et al. Brief Report: long-term outcome of a randomized clinical trial 939 comparing methotrexate to cyclophosphamide for remission induction in early 940 systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 941 64, 3472-3477 (2012). 942 235 Jayne, D. et al. A randomized trial of maintenance therapy for vasculitis associated 943 with antineutrophil cytoplasmic autoantibodies. N. Eng. J. Med. 349, 36-44 (2003). 944 236 Pagnoux, C. et al. Azathioprine or methotrexate maintenance for ANCA-associated 945 vasculitis. N. Eng. J. Med. 359, 2790-2803 (2008). 946 237 Puechal, X. et al. Long-Term Outcomes Among Participants in the WEGENT Trial of 947 Remission-Maintenance Therapy for Granulomatosis With Polyangiitis (Wegener's) 948 or Microscopic Polyangiitis. Arthritis Rheum. 68, 690-701 (2016). 949 238 Hiemstra, T. F. et al. Mycophenolate mofetil vs azathioprine for remission 950 maintenance in antineutrophil cytoplasmic antibody-associated vasculitis: a 951 randomized controlled trial. JAMA 304, 2381-2388 (2010). 952 239 Terrier, B. et al. Long-term efficacy of remission-maintenance regimens for ANCA-953 associated vasculitides. Ann. Rheum. Dis. 77, 1150-1156 (2018). 954 240 Etanercept plus standard therapy for Wegener's granulomatosis. N. Eng. J. Med. 352, 955 351-361 (2005). 956 241 Metzler, C. et al. Elevated relapse rate under oral methotrexate versus leflunomide for 957 maintenance of remission in Wegener's granulomatosis. *Rheumatology* 46, 1087-1091 958 (2007). 959

960	242	Jayne, D. et al. Efficacy and Safety of Belimumab and Azathioprine for Maintenance
961		of Remission in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A
962		Randomized Controlled Study. Arthritis Rheum. 71, 952-963 (2019).
963	243	Stegeman, C. A., Tervaert, J. W., de Jong, P. E. & Kallenberg, C. G. Trimethoprim-
964		sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's
965		granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N. Eng. J. Med. 335,
966		16-20 (1996).
967	244	Ribi, C. et al. Treatment of Churg-Strauss syndrome without poor-prognosis factors: a
968		multicenter, prospective, randomized, open-label study of seventy-two patients.
969		Arthritis Rheum. 58, 586-594 (2008).
970	245	Puéchal, X. et al. Non-severe eosinophilic granulomatosis with polyangiitis: long-
971		term outcomes after remission-induction trial. Rheumatology 58, 2107-2116 (2019).
972	246	Guillevin, L. et al. Lack of superiority of steroids plus plasma exchange to steroids
973		alone in the treatment of polyarteritis nodosa and Churg-Strauss syndrome. A
974		prospective, randomized trial in 78 patients. Arthritis Rheum. 35, 208-215 (1992).
975	247	Guillevin, L. et al. Corticosteroids plus pulse cyclophosphamide and plasma
976		exchanges versus corticosteroids plus pulse cyclophosphamide alone in the treatment
977		of polyarteritis nodosa and Churg-Strauss syndrome patients with factors predicting
978		poor prognosis. A prospective, randomized trial in sixty-two patients. Arthritis
979		<i>Rheum.</i> 38 , 1638-1645 (1995).
980	248	Ma, T. K., McAdoo, S. P. & Tam, F. W. Targeting the tyrosine kinase signalling
981		pathways for treatment of immune-mediated glomerulonephritis: from bench to
982		bedside and beyond. Nephrol. Dial. Transplant. 32, i129-i138 (2017).
983	249	Langford, C. A. et al. An open-label trial of abatacept (CTLA4-IG) in non-severe
984		relapsing granulomatosis with polyangiitis (Wegener's). Ann. Rheum. Dis. 73, 1376-
985		1379 (2014).
986	250	Holdsworth, S. R., Gan, P. Y. & Kitching, A. R. Biologics for the treatment of
987		autoimmune renal diseases. Nat. Rev. Nephrol. 12, 217-231 (2016).
988	251	Gan, P. Y. et al. Apoptotic Cell-Induced, Antigen-Specific Immunoregulation to Treat
989		Experimental Antimyeloperoxidase GN. J. Am. Soc. Nephrol. 30, 1365-1374 (2019).
990	252	Biasci, D. et al. A blood-based prognostic biomarker in IBD. Gut 68, 1386-1395
991		(2019).

992	253	Bunch, D. O. et al. Gleaning relapse risk from B cell phenotype: decreased CD5+ B
993		cells portend a shorter time to relapse after B cell depletion in patients with ANCA-
994		associated vasculitis. Ann. Rheum. Dis. 74, 1784-1786 (2015).
995	254	Ormerod, A. S. & Cook, M. C. Epidemiology of primary systemic vasculitis in the
996		Australian Capital Territory and south-eastern New South Wales. Int. Med. J. 38, 816-
997		823 (2008).
998	255	Anderson, K., Klassen, J., Stewart, S. A. & Taylor-Gjevre, R. M. Does geographic
999		location affect incidence of ANCA-associated renal vasculitis in northern
1000		Saskatchewan, Canada? Rheumatology 52, 1840-1844 (2013).
1001	256	Reinhold-Keller, E., Herlyn, K., Wagner-Bastmeyer, R. & Gross, W. L. Stable
1002		incidence of primary systemic vasculitides over five years: results from the German
1003		vasculitis register. Arthritis Rheum. 53, 93-99 (2005).
1004	257	Panagiotakis, S. H. et al. The epidemiology of primary systemic vasculitides
1005		involving small vessels in Crete (southern Greece): a comparison of older versus
1006		younger adult patients. Clin. Exp. Rheumatol. 27, 409-415 (2009).
1007	258	Fujimoto, S. et al. Comparison of the epidemiology of anti-neutrophil cytoplasmic
1008		antibody-associated vasculitis between Japan and the U.K. Rheumatology 50, 1916-
1009		1920 (2011).
1010	259	Dadoniene, J., Kirdaite, G., Mackiewicz, Z., Rimkevicius, A. & Haugeberg, G.
1011		Incidence of primary systemic vasculitides in Vilnius: a university hospital population
1012		based study. Ann. Rheum. Dis. 64, 335-336 (2005).
1013	260	Pamuk, O., Donmez, S. & Calayir, G. B. The Incidences of Anti-Neutrophil
1014		Cytoplasmic Antibody-Associated Vasculitis in Northeastern Part of Turkey. Ann.
1015		Rheum. Dis. 72, 638-638 (2013).
1016	261	Sánchez Torres A. et al. Epidemiología de las vasculitis sistémicas primarias en una
1017		población latino americana. Reumatologia, 145-150 (2005).
1018	262	Gonzalez-Gay, M. A., Garcia-Porrua, C., Guerrero, J., Rodriguez-Ledo, P. & Llorca,
1019		J. The epidemiology of the primary systemic vasculitides in northwest Spain:
1020		implications of the Chapel Hill Consensus Conference definitions. Arthritis Rheum.
1021		49 , 388-393 (2003).
1022	263	Romero-Gomez, C. et al. Epidemiological study of primary systemic vasculitides
1023		among adults in southern Spain and review of the main epidemiological studies. Clin.
1024		Exp. Rheumatol. 33 Suppl 89, S-11-8 (2015).

77

1025	264	Mohammad, A. J., Jacobsson, L. T., Westman, K. W., Sturfelt, G. & Segelmark, M.
1026		Incidence and survival rates in Wegener's granulomatosis, microscopic polyangiitis,
1027		Churg-Strauss syndrome and polyarteritis nodosa. Rheumatology 48, 1560-1565
1028		(2009).
1029	265	Zeft, A. S., Schlesinger, M. K. H. Wegener's granulomatosis and environmental
1030		factors in Western Montana. Rheumatol. Rep., e8 (2010).
1031	266	Nesher, G., Ben-Chetrit, E., Mazal, B. & Breuer, G. S. The Incidence of Primary
1032		Systemic Vasculitis in Jerusalem: A 20-year Hospital-based Retrospective Study. J
1033		Rheumatol. 43, 1072-1077 (2016).
1034	267	Damoiseaux, J. et al. An international survey on anti-neutrophil cytoplasmic
1035		antibodies (ANCA) testing in daily clinical practice. Clin. Chem. Lab. Med. 56, 1759-
1036		1770 (2018).
1037	268	Damoiseaux, J. et al. Detection of antineutrophil cytoplasmic antibodies (ANCAs): a
1038		multicentre European Vasculitis Study Group (EUVAS) evaluation of the value of
1039		indirect immunofluorescence (IIF) versus antigen-specific immunoassays. Ann.
1040		Rheum. Dis. 76, 647-653 (2017).
1041	269	Savige, J. et al. International Consensus Statement on Testing and Reporting of
1042		Antineutrophil Cytoplasmic Antibodies (ANCA). Am. J. Clin. Pathol. 111, 507-513
1043		(1999).
1044	270	Choi, H. K., Lamprecht, P., Niles, J. L., Gross, W. L. & Merkel, P. A. Subacute
1045		bacterial endocarditis with positive cytoplasmic antineutrophil cytoplasmic antibodies
1046		and anti-proteinase 3 antibodies. Arthritis Rheum. 43, 226-231 (2000).
1047	271	Mahr, A. et al. Brief report: prevalence of antineutrophil cytoplasmic antibodies in
1048		infective endocarditis. Arthritis Rheum. 66, 1672-1677 (2014).
1049	272	Ying, C. M., Yao, D. T., Ding, H. H. & Yang, C. D. Infective endocarditis with
1050		antineutrophil cytoplasmic antibody: report of 13 cases and literature review. PLos
1051		<i>One</i> 9 , e89777 (2014).
1052	273	Weiner, M. & Segelmark, M. The clinical presentation and therapy of diseases related
1053		to anti-neutrophil cytoplasmic antibodies (ANCA). Autoimmun. Rev. 15, 978-982
1054		(2016).
1055	274	Zhao, M. H. et al. Autoantibodies against bactericidal/permeability-increasing protein
1056		in patients with cystic fibrosis. QJM 89, 259-265 (1996).
1057	275	Chen, M., Gao, Y., Guo, X. H. & Zhao, M. H. Propylthiouracil-induced antineutrophil
1058		cytoplasmic antibody-associated vasculitis. Nat. Rev. Nephrol. 8, 476-483 (2012).

1059	276	Pendergraft, W. F. & Niles, J. L. Trojan horses: drug culprits associated with
1060		antineutrophil cytoplasmic autoantibody (ANCA) vasculitis. Curr. Opin. Rheumatol.
1061		26 , 42-49 (2014).
1062	277	Grau, R. G. Drug-Induced Vasculitis: New Insights and a Changing Lineup of
1063		Suspects. Curr. Rheumatol. Rep. 17, 71 (2015).
1064	278	Lee, E. et al. Inactivation of peroxidases of rat bone marrow by repeated
1065		administration of propylthiouracil is accompanied by a change in the heme structure.
1066		Biochem. Pharmacol. 37, 2151-2153 (1988).
1067	279	Nakazawa, D. et al. Abnormal conformation and impaired degradation of
1068		propylthiouracil-induced neutrophil extracellular traps: implications of disordered
1069		neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil
1070		cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 64, 3779-3787 (2012).
1071	280	Lood, C. & Hughes, G. C. Neutrophil extracellular traps as a potential source of
1072		autoantigen in cocaine-associated autoimmunity. Rheumatology 56, 638-643 (2017).
1073		
1074	T CI	
1075	ToC b	
1076	The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are	
1077	autoimmune disorders characterized by inflammation and destruction of small blood vessels.	
1078	in this	Primer, the authors discuss the classification of AAVs and the pathogenetic
1079	mecna	mismis, magnosis and treatment of these dedilitating conditions.
1080		

Figure 1

PANCA

Figure 4

