241 research outputs found
Predicting Unplanned Hospital Readmissions using Patient Level Data
The rate of unplanned hospital readmissions in the US is likely to face a steady rise after 2020. Hence, this issue has received considerable critical attention with the policy makers. Majority of hospitals in the US pay millions of dollars as penalty for readmitting patients within 30 days due to strict norms imposed by the Hospital Readmission Reduction Program. In this study, we develop two novel models: PURE (Predicting Unplanned Readmissions using Embeddings) and Hybrid DeepR, which uses the historical medical events of patients to predict readmissions within 30 days. Both these models are hybrid sequence models that leverage both sequential events (history of events) and static features (like gender, blood pressure) of the patients to mine patterns in the data. Our results are promising, and they benchmark previous results in predicting hospital readmissions. The contributions of this study add to existing literature on healthcare analytics
Generalized DPW method and an application to isometric immersions of space forms
Let be a complex Lie group and denote the group of maps from
the unit circle into , of a suitable class. A differentiable
map from a manifold into , is said to be of \emph{connection
order } if the Fourier expansion in the loop parameter of the
-family of Maurer-Cartan forms for , namely F_\lambda^{-1}
\dd F_\lambda, is of the form . Most
integrable systems in geometry are associated to such a map. Roughly speaking,
the DPW method used a Birkhoff type splitting to reduce a harmonic map into a
symmetric space, which can be represented by a certain order map,
into a pair of simpler maps of order and respectively.
Conversely, one could construct such a harmonic map from any pair of
and maps. This allowed a Weierstrass type description
of harmonic maps into symmetric spaces. We extend this method to show that, for
a large class of loop groups, a connection order map, for ,
splits uniquely into a pair of and maps. As an
application, we show that constant non-zero curvature submanifolds with flat
normal bundle of a sphere or hyperbolic space split into pairs of flat
submanifolds, reducing the problem (at least locally) to the flat case. To
extend the DPW method sufficiently to handle this problem requires a more
general Iwasawa type splitting of the loop group, which we prove always holds
at least locally.Comment: Some typographical correction
Near-Surface Interface Detection for Coal Mining Applications Using Bispectral Features and GPR
The use of ground penetrating radar (GPR) for detecting the presence of near-surface interfaces is a scenario of special interest to the underground coal mining industry. The problem is difficult to solve in practice because the radar echo from the near-surface interface is often dominated by unwanted components such as antenna crosstalk and ringing, ground-bounce effects, clutter, and severe attenuation. These nuisance components are also highly sensitive to subtle variations in ground conditions, rendering the application of standard signal pre-processing techniques such as background subtraction largely ineffective in the unsupervised case. As a solution to this detection problem, we develop a novel pattern recognition-based algorithm which utilizes a neural network to classify features derived from the bispectrum of 1D early time radar data. The binary classifier is used to decide between two key cases, namely whether an interface is within, for example, 5 cm of the surface or not. This go/no-go detection capability is highly valuable for underground coal mining operations, such as longwall mining, where the need to leave a remnant coal section is essential for geological stability. The classifier was trained and tested using real GPR data with ground truth measurements. The real data was acquired from a testbed with coal-clay, coal-shale and shale-clay interfaces, which represents a test mine site. We show that, unlike traditional second order correlation based methods such as matched filtering which can fail even in known conditions, the new method reliably allows the detection of interfaces using GPR to be applied in the near-surface region. In this work, we are not addressing the problem of depth estimation, rather confining ourselves to detecting an interface within a particular depth range
Impact of purse seine operations on traditional fishery with special reference to oil sardine in Kerala during 1980 and 1981
There has been a marked decline in the landings of oil sardine in 1980, compared to the previous two
Years. A study was undertaken to examine the reasons for this decline and to determine whether the
Purse seine operations which started in 1979 has any influence on the treiditional fishery. For this purpose
The data on catch, effort, age and length composition of oil sardine collected by this Institute during
1978-81 period pertaining to indigenous gears and purse seines and the data on socio-economic cispects
Gathered through a special survey in 1981 in the coastal villages of Kerala were considered. The purse seiners have started operations in Cochin area during the latter half of 1979 with about 10 units, which increased to about 40 and 60 in 1980 and 1981 respectively. The purse seiners operated are of about 13 m. In length with nets measuring 500-600 m in length and 50-60 m in depth with the meshes ranging from 13 to 20 mm in size
Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"
In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that
XENON100's upper limits on spin-independent WIMP-nucleon cross sections for
WIMP masses below 10 GeV "may be understated by one order of magnitude or
more". Having performed a similar, though more detailed analysis prior to the
submission of our new result (arXiv:1207.5988), we do not confirm these
findings. We point out the rationale for not considering the described effect
in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure
Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment
The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410
has been developed by Hamamatsu for dark matter direct detection experiments
using liquid xenon as the target material. We present the results from the
joint effort between the XENON collaboration and the Hamamatsu company to
produce a highly radio-pure photosensor (version R11410-21) for the XENON1T
dark matter experiment. After introducing the photosensor and its components,
we show the methods and results of the radioactive contamination measurements
of the individual materials employed in the photomultiplier production. We then
discuss the adopted strategies to reduce the radioactivity of the various PMT
versions. Finally, we detail the results from screening 216 tubes with
ultra-low background germanium detectors, as well as their implications for the
expected electronic and nuclear recoil background of the XENON1T experiment.Comment: 10 pages, 5 figure
Search for Event Rate Modulation in XENON100 Electronic Recoil Data
We have searched for periodic variations of the electronic recoil event rate
in the (2-6) keV energy range recorded between February 2011 and March 2012
with the XENON100 detector, adding up to 224.6 live days in total. Following a
detailed study to establish the stability of the detector and its background
contributions during this run, we performed an un-binned profile likelihood
analysis to identify any periodicity up to 500 days. We find a global
significance of less than 1 sigma for all periods suggesting no statistically
significant modulation in the data. While the local significance for an annual
modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and
the phase of the modulation disfavor a dark matter interpretation. The
DAMA/LIBRA annual modulation interpreted as a dark matter signature with
axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.Comment: 6 pages, 4 figure
A Novel Solid-Phase Site-Specific PEGylation Enhances the In Vitro and In Vivo Biostabilty of Recombinant Human Keratinocyte Growth Factor 1
Keratinocyte growth factor 1 (KGF-1) has proven useful in the treatment of pathologies associated with dermal adnexae, liver, lung, and the gastrointestinal tract diseases. However, poor stability and short plasma half-life of the protein have restricted its therapeutic applications. While it is possible to improve the stability and extend the circulating half-life of recombinant human KGF-1 (rhKGF-1) using solution-phase PEGylation, such preparations have heterogeneous structures and often low specific activities due to multiple and/or uncontrolled PEGylation. In the present study, a novel solid-phase PEGylation strategy was employed to produce homogenous mono-PEGylated rhKGF-1. RhKGF-1 protein was immobilized on a Heparin-Sepharose column and then a site-selective PEGylation reaction was carried out by a reductive alkylation at the N-terminal amino acid of the protein. The mono-PEGylated rhKGF-1, which accounted for over 40% of the total rhKGF-1 used in the PEGylation reaction, was purified to homogeneity by SP Sepharose ion-exchange chromatography. Our biophysical and biochemical studies demonstrated that the solid-phase PEGylation significantly enhanced the in vitro and in vivo biostability without affecting the over all structure of the protein. Furthermore, pharmacokinetic analysis showed that modified rhKGF-1 had considerably longer plasma half-life than its intact counterpart. Our cell-based analysis showed that, similar to rhKGF-1, PEGylated rhKGF-1 induced proliferation in NIH 3T3 cells through the activation of MAPK/Erk pathway. Notably, PEGylated rhKGF-1 exhibited a greater hepatoprotection against CCl4-induced injury in rats compared to rhKGF-1
A Mycobacterium leprae Hsp65 Mutant as a Candidate for Mitigating Lupus Aggravation in Mice
Hsp60 is an abundant and highly conserved family of intracellular molecules. Increased levels of this family of proteins have been observed in the extracellular compartment in chronic inflammation. Administration of M. leprae Hsp65 [WT] in [NZBxNZW]F1 mice accelerates the Systemic Lupus Erythematosus [SLE] progression whereas the point mutated K409A Hsp65 protein delays the disease. Here, the biological effects of M. leprae Hsp65 Leader pep and K409A pep synthetic peptides, which cover residues 352–371, are presented. Peptides had immunomodulatory effects similar to that observed with their respective proteins on survival and the combined administration of K409A+Leader pep or K409A pep+WT showed that the mutant forms were able to inhibit the deleterious effect of WT on mortality, indicating the neutralizing potential of the mutant molecules in SLE progression. Molecular modeling showed that replacing Lysine by Alanine affects the electrostatic potential of the 352–371 region. The number of interactions observed for WT is much higher than for Hsp65 K409A and mouse Hsp60. The immunomodulatory effects of the point-mutated protein and peptide occurred regardless of the catalytic activity. These findings may be related to the lack of effect on survival when F1 mice were inoculated with Hsp60 or K409A pep. Our findings indicate the use of point-mutated Hsp65 molecules, such as the K409A protein and its corresponding peptide, that may minimize or delay the onset of SLE, representing a new approach to the treatment of autoimmune diseases
- …