40 research outputs found
A steady-state continuous flow chamber for the study of daytime and nighttime chemistry under atmospherically relevant NO levels
Experiments performed in laboratory chambers have contributed significantly to the understanding of the fundamental kinetics and mechanisms of the chemical reactions occurring in the atmosphere. Two chemical regimes, classified as high-NO vs. zero-NO conditions, have been extensively studied in previous chamber experiments. Results derived from these two chemical scenarios are widely parameterized in chemical transport models to represent key atmospheric processes in urban and pristine environments. As the anthropogenic NO_x emissions in the United States have decreased remarkably in the past few decades, the classic high-NO and zero-NO conditions are no longer applicable to many regions that are constantly impacted by both polluted and background air masses. We present here the development and characterization of the NCAR Atmospheric Simulation Chamber, which is operated in steady-state continuous flow mode for the study of atmospheric chemistry under intermediate NO conditions. This particular chemical regime is characterized by constant sub-ppb levels of NO and can be created in the chamber by precise control of the inflow NO concentration and the ratio of chamber mixing to residence timescales. Over the range of conditions achievable in the chamber, the lifetime of peroxy radicals (RO_2), a key intermediate from the atmospheric degradation of volatile organic compounds (VOCs), can be extended to several minutes, and a diverse array of reaction pathways, including unimolecular pathways and bimolecular reactions with NO and HO_2, can thus be explored. Characterization experiments under photolytic and dark conditions were performed and, in conjunction with model predictions, provide a basis for interpretation of prevailing atmospheric processes in environments with intertwined biogenic and anthropogenic activities. We demonstrate the proof of concept of the steady-state continuous flow chamber operation through measurements of major first-generation products, methacrolein (MACR) and methyl vinyl ketone (MVK), from OH- and NO_3- initiated oxidation of isoprene
A steady-state continuous flow chamber for the study of daytime and nighttime chemistry under atmospherically relevant NO levels
Experiments performed in laboratory chambers have contributed significantly to the understanding of the fundamental kinetics and mechanisms of the chemical reactions occurring in the atmosphere. Two chemical regimes, classified as high-NO vs. zero-NO conditions, have been extensively studied in previous chamber experiments. Results derived from these two chemical scenarios are widely parameterized in chemical transport models to represent key atmospheric processes in urban and pristine environments. As the anthropogenic NO_x emissions in the United States have decreased remarkably in the past few decades, the classic high-NO and zero-NO conditions are no longer applicable to many regions that are constantly impacted by both polluted and background air masses. We present here the development and characterization of the NCAR Atmospheric Simulation Chamber, which is operated in steady-state continuous flow mode for the study of atmospheric chemistry under intermediate NO conditions. This particular chemical regime is characterized by constant sub-ppb levels of NO and can be created in the chamber by precise control of the inflow NO concentration and the ratio of chamber mixing to residence timescales. Over the range of conditions achievable in the chamber, the lifetime of peroxy radicals (RO_2), a key intermediate from the atmospheric degradation of volatile organic compounds (VOCs), can be extended to several minutes, and a diverse array of reaction pathways, including unimolecular pathways and bimolecular reactions with NO and HO_2, can thus be explored. Characterization experiments under photolytic and dark conditions were performed and, in conjunction with model predictions, provide a basis for interpretation of prevailing atmospheric processes in environments with intertwined biogenic and anthropogenic activities. We demonstrate the proof of concept of the steady-state continuous flow chamber operation through measurements of major first-generation products, methacrolein (MACR) and methyl vinyl ketone (MVK), from OH- and NO_3- initiated oxidation of isoprene
Recommended from our members
Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance
Abstract. Oxidation flow reactors (OFR) are a promising complement to environmental chambers for investigating atmospheric oxidation processes and secondary aerosol formation. However, questions have been raised about how representative the chemistry within OFRs is of that in the troposphere. We investigate the fates of organic peroxy radicals (RO 2 ), which play a central role in atmospheric organic chemistry, in OFRs and environmental chambers by chemical kinetic modeling, and compare to a variety of ambient conditions to help define a range of atmospherically relevant OFR operating conditions. For most types of RO 2 , their bimolecular fates in OFRs are mainly RO 2 +HO 2 and RO 2 +NO, similar to chambers and atmospheric studies. For substituted primary RO 2 and acyl RO 2 , RO 2 +RO 2 can make a significant contribution to the fate of RO 2 in OFRs, chambers and the atmosphere, but RO 2 +RO 2 in OFRs is in general somewhat less important than in the atmosphere. At high NO, RO 2 +NO dominates RO 2 fate in OFRs, as in the atmosphere. At high UV lamp setting in OFRs, RO 2 +OH can be a major RO 2 fate and RO 2 isomerization can be negligible for common multifunctional RO 2 , both of which deviate from common atmospheric conditions. In the OFR254 operation mode (where OH is generated only from photolysis of added O 3 ), we cannot identify any conditions that can simultaneously avoid significant organic photolysis at 254 nm and lead to RO 2 lifetimes long enough (~ 10 s) to allow atmospherically relevant RO 2 isomerization. In the OFR185 mode (where OH is generated from reactions initiated by 185 nm photons), high relative humidity, low UV intensity and low precursor concentrations are recommended for atmospherically relevant gas-phase chemistry of both stable species and RO 2 . These conditions ensure minor or negligible RO 2 +OH and a relative importance of RO 2 isomerization in RO 2 fate in OFRs within ~ x2 of that in the atmosphere. Under these conditions, the photochemical age within OFR185 systems can reach a few equivalent days at most, encompassing the typical ages for maximum secondary organic aerosol (SOA) production. A small increase in OFR temperature may allow the relative importance of RO 2 isomerization to approach the ambient values. To study heterogeneous oxidation of SOA formed under atmospherically-relevant OFR conditions, a different UV source with higher intensity is needed after the SOA formation stage, which can be done with another reactor in series. Finally, we recommend evaluating the atmospheric relevance of RO 2 chemistry by always reporting measured and/or estimated OH, HO 2 , NO, NO 2 and OH reactivity (or at least precursor composition and concentration) in all chamber and flow reactor experiments. An easy-to-use RO 2 fate estimator program is included with this paper to facilitate investigation of this topic in future studies.</p
Recommended from our members
Atmospheric chemistry of isopropyl formate and tert-butyl formate
Article on the atmospheric chemistry of isopropyl formate and tert-butyl formate
Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene
We use a large laboratory, modeling, and field dataset to investigate the isoprene + O_3 reaction, with the goal of better understanding the fates of the C_1 and C_4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C_1 stabilized Criegee (CH_2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C_4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH_2OO + H_2O (k_((H_2O)) ∼ 1 × 10^(−15) cm^3 molec^(−1) s^(−1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H_2O_2, and 21% formic acid + H_2O; and CH_2OO + (H_2O)_2 (k_((H_2O)_2) ∼ 1 × 10^(−12) cm^3 molec^(−1) s^(−1)) yields 40% HMHP, 6% formaldehyde + H_2O_2, and 54% formic acid + H_2O. Competitive rate determinations (k_(SO_2/k(H_2O)n=1,2) ∼ 2.2 (±0.3) × 10^4) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO_2] ∼ 10 ppb). The importance of the CH_2OO + (H_2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH_2OO does not substantially affect the lifetime of SO_2 or HCOOH in the Southeast US, e.g., CH_2OO + SO_2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant
The Essential Role for Laboratory Studies in Atmospheric Chemistry
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines
The Essential Role for Laboratory Studies in Atmospheric Chemistry
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines