16 research outputs found

    The independent effects of hypovolemia and pulmonary vasoconstriction on ventricular function and exercise capacity during acclimatisation to 3800 m

    Get PDF
    We aimed to determine the isolated and combined contribution of hypovolemia and hypoxic pulmonary vasoconstriction in limiting left ventricular (LV) function and exercise capacity under chronic hypoxemia at high altitude. In a doubleā€blinded, randomized and placeboā€controlled design, twelve healthy participants underwent echocardiography at rest and during submaximal exercise before completing a maximal test to exhaustion at sea level (SL; 344 m) and after 5ā€“10 days at 3800 m. Plasma volume was normalised to SL values, and hypoxic pulmonary vasoconstriction was reversed by administration of Sildenafil (50 mg) to create four unique experimental conditions that were compared with SL values; high altitude (HA), Plasma Volume Expansion (HAā€PVX), Sildenafil (HAā€SIL) and Plasma Volume Expansion with Sildenafil (HAā€PVXā€SIL). High altitude exposure reduced plasma volume by 11% (P < 0.01) and increased pulmonary artery systolic pressure (19.6 Ā± 4.3 vs. 26.0 Ā± 5.4, P < 0.001); these differences were abolished by PVX and SIL respectively. LV endā€diastolic volume (EDV) and stroke volume (SV) were decreased upon ascent to high altitude, but were comparable to sea level in the HAā€PVX. LV EDV and SV were also elevated in the HAā€SIL and HAā€PVXā€SIL trials compared to HA, but to a lesser extent. Neither PVX or SIL had a significant effect on the LV EDV and SV response to exercise, or the maximal oxygen consumption or peak power output. In summary, at 3800 m both hypovolemia and hypoxic pulmonary vasoconstriction contribute to the decrease in LV filling, however, restoring LV filling does not confer an improvement in maximal exercise performance

    Global REACH: Assessment of brady-arrhythmias in Andeans and Lowlanders during apnea at 4330m

    Get PDF
    BACKGROUND: Ascent to altitude increases the prevalence of arrhythmogenesis in low-altitude dwelling populations (Lowlanders). High altitude populations (ie. Nepalese Sherpa) may have arrhythmias resistant adaptations that prevent arrhythmogenesis at altitude, though this has not been documented in other High altitude groups, including those diagnosed with chronic mountain sickness (CMS). We investigated whether healthy (CMS-) and CMS afflicted (CMS+) Andeans exhibit cardiac arrhythmias under acute apneic stress at altitude. METHODS AND RESULTS: Electrocardiograms (lead II) were collected in CMS- (N=9), CMS+ (N=8), and Lowlanders (N= 13) following several days at 4330m (Cerro de Pasco, Peru). ECG rhythm and HR were assessed at both rest and during maximal volitional apnea (End-Expiratory [EXP]). Both CMS- and CMS+ had similar basal HR (69 Ā± 8 beats/min vs. 62 Ā± 11 beats/min), while basal HR was higher in Lowlanders (77 Ā± 18 beats/min; P<0.05 versus CMS+). Apnea elicited significant bradycardia (nadir -32 Ā± 15 beats/min; P<0.01) and the development of arrhythmias in 8/13 Lowlanders (junctional rhythm, 3Ā° atrio-venticular block, sinus pause). HR was preserved was prior to volitional breakpoint in both CMS- (nadir -6 Ā± 1 beat/min) and CMS+ (1 Ā±12 beats/min), with 2/17 Andeans developing arrhythmias ( 1 CMS+ and 1 CMS-; both Premature Atrial Contraction) prior to breakpoint. CONCLUSIONS: Andeans showed an absence of arrhythmias and preserved HR response to volitional apnea at altitude, demonstrating that potential cardio-resistant adaptations to arrhythmogenesis exist across permanent HA populations. Acclimatized Lowlanders have further demonstrated an increased prevalence of arrhythmias at altitude

    Impaired myocardial function does not explain reduced left ventricular filling and stroke volume at rest or during exercise at high altitude

    Get PDF
    Impaired myocardial systolic contraction and diastolic relaxation have been suggested as possible mechanisms contributing to the decreased stroke volume (SV) observed at high altitude (HA). To determine whether intrinsic myocardial performance is a limiting factor in the generation of SV at HA, we assessed left ventricular (LV) systolic and diastolic mechanics and volumes in 10 healthy participants (aged 32 Ā± 7; mean Ā± SD) at rest and during exercise at sea level (SL; 344 m) and after 10 days at 5,050 m. In contrast to SL, LV end-diastolic volume was āˆ¼19% lower at rest (P = 0.004) and did not increase during exercise despite a greater untwisting velocity. Furthermore, resting SV was lower at HA (āˆ¼17%; 60 Ā± 10 vs. 70 Ā± 8 ml) despite higher LV twist (43%), apical rotation (115%), and circumferential strain (17%). With exercise at HA, the increase in SV was limited (12 vs. 22 ml at SL), and LV apical rotation failed to augment. For the first time, we have demonstrated that EDV does not increase upon exercise at high altitude despite enhanced in vivo diastolic relaxation. The increase in LV mechanics at rest may represent a mechanism by which SV is defended in the presence of a reduced EDV. However, likely because of the higher LV mechanics at rest, no further increase was observed up to 50% peak power. Consequently, although hypoxia does not suppress systolic function per se, the capacity to increase SV through greater deformation during submaximal exercise at HA is restricted. during initial exposure to hypobaric hypoxia at high altitude (HA), cardiac output for a given absolute workload is increased to compensate for a lower arterial oxygen content before returning to baseline levels with acclimatization (8). However, after 2-5 days of acclimatization, the required cardiac output is generated through a lower stroke volume (SV) and higher heart rate (38). The reduced SV is suggestive of either lower ventricular filling, potentially caused in part by an impaired myocardial relaxation, or impaired ejection secondary to systolic contractile dysfunction. There is, however, a paucity of data in humans supporting a direct effect of hypoxia on myocardial function at HA (25, 41). The suggestion that hypoxia may impair myocardial systolic function during exercise was proposed nearly 50 years ago (3) and has been revisited more recently (27ā€“29). Negative inotropic effects of hypoxia (arterial oxygen tension of 44 mmHg) have been shown in intact animal models (39) and isolated myocardial fibers under severe hypoxia (1% O2) (33). Exercise training under hypobaric hypoxia is also associated with altered mechanical properties at a cellular level in rodents (9), although chronic hypoxia alone did not decrease myofilament sensitivity to calcium. However, in contrast to animal studies, data in humans indicate that systolic function is maintained or enhanced at HA. For example, Suarez et al. (37) reported the maintenance of systolic function after gradual decompression to a barometric pressure of 282 mmHg, a finding that was subsequently confirmed by numerous investigations during acute and prolonged hypoxic exposure (6, 10, 12, 23, 31). However, of these studies, only Suarez et al. (37) investigated systolic function during light exercise (60 W), where function appeared to be maintained. It is not known whether systolic function is maintained at higher exercise intensities. It has also been speculated that reduced oxygen availability may impair diastolic relaxation at HA (15, 18) and thus explain the decreased left ventricular (LV) end-diastolic volume (EDV) commonly observed (2, 6, 18). However, despite numerous studies reporting a decrease in plasma volume and altered transmitral filling patterns (2, 6, 20), myocardial relaxation was only previously investigated during hypoxia in dogs (15), and no data exist examining LV relaxation during exercise at high altitude. By using sensitive, noninvasive imaging techniques (two-dimensional speckle tracking), it is now possible to examine the LV deformation mechanics (strain, twist, and untwist velocity) that underpin LV systolic and diastolic function. LV strain and twist have been shown to be sensitive measures of global and regional myocardial function, and reveal subclinical dysfunction in patients where ejection fraction is unchanged (16, 22). In addition, diastolic LV untwist velocity correlates well with invasive measures of LV stiffness and provides a temporal link between relaxation and the development of intraventricular pressure gradients (30, 43). Therefore, examination of LV mechanics at HA may determine whether the decreased SV observed at HA is dependent on impaired myocardial relaxation and/or myocardial contractile dysfunction or confirm previous findings of preserved ventricular function during exercise (37). We therefore assessed systolic and diastolic ventricular mechanics during incremental exercise at sea level and HA to examine whether impaired myocardial relaxation or systolic dysfunction explains the previously reported reduction in SV at HA. We hypothesized that at HA, 1) ventricular filling would be lower at rest and during exercise and would be accompanied by a reduction in untwist velocity and 2) systolic mechanics would be impaired during exercise at HA

    UBC-Nepal expedition: The use of oral antioxidants does not alter cerebrovascular function at sea-level or high-altitude

    Get PDF
    Hypoxia is associated with an increased systemic and cerebral formation of free radicals and associated reactants that may be linked to impaired cerebral vascular function a neurological sequela. To what extent oral antioxidants prophylaxis impacts cerebrovascular function in humans throughout the course of acclimatization to the hypoxia of terrestrial high-altitude has not been examined. Thus, the purpose of the current study was to examine the influence of orally ingested antioxidants at clinically relevant doses (vitamin C, E, and alpha-lipoic acid) on cerebrovascular regulation at sea-level (344 m; n = 12; female n = 2 participants), and at high altitude (5050 m; n = 9; female n = 2), in a randomized, placebo-controlled, and double-blinded crossover design. Hypercapnic and hypoxic cerebrovascular reactivity tests of the internal carotid (ICA)] were conducted at sea-level, while global and regional cerebral blood flow [i.e. ICA and vertebral artery (VA)] were assessed after 10ā€“12 days following arrival at 5050 m. At sea-level, acute administration of antioxidants did not alter cerebral hypoxic cerebrovascular reactivity (pre vs. post: 1.5 Ā± 0.7 vs. 1.2 Ā± 0.8 %āˆ†CBF/-%āˆ†SpO2; P = 0.96), or cerebral hypercapnic cerebrovascular reactivity (pre vs. post: 5.7 Ā± 2.0 vs. 5.8 Ā± 1.9 %āˆ†CBF/āˆ†mmHg; P = 0.33). Furthermore, global cerebral blood flow (P = 0.43), as well as cerebral vascular conductance (ICA P = 0.08; VA P = 0.32), were unaltered at 5050 m following antioxidant administration. In conclusion, these data show that an oral antioxidant cocktail known to attenuate systemic oxidative stress failed to alter cerebrovascular function at sea-level and cerebral blood flow during acclimatization to high-altitude

    UBC-Nepal Expedition: An experimental overview of the 2016 University of British Columbia Scientific Expedition to Nepal Himalaya

    Get PDF
    The University of British Columbia Nepal Expedition took place over several months in the fall of 2016 and was comprised of an international team of 37 researchers. This paper describes the objectives, study characteristics, organization and management of this expedition, and presents novel blood gas data during acclimatization in both lowlanders and Sherpa. An overview and framework for the forthcoming publications is provided. The expedition conducted 17 major studies with two principal goalsā€”to identify physiological differences in: 1) acclimatization; and 2) responses to sustained high-altitude exposure between lowland natives and people of Tibetan descent. We performed observational cohort studies of human responses to progressive hypobaric hypoxia (during ascent), and to sustained exposure to 5050 m over 3 weeks comparing lowlander adults (n = 30) with Sherpa adults (n = 24). Sherpa were tested both with (n = 12) and without (n = 12) descent to Kathmandu. Data collected from lowlander children (n = 30) in Canada were compared with those collected from Sherpa children (n = 57; 3400ā€“3900m). Studies were conducted in Canada (344m) and the following locations in Nepal: Kathmandu (1400m), Namche Bazaar (3440m), Kunde Hospital (3480m), Pheriche (4371m) and the Ev-K2-CNR Research Pyramid Laboratory (5050m). The core studies focused on the mechanisms of cerebral blood flow regulation, the role of iron in cardiopulmonary regulation, pulmonary pressures, intra-ocular pressures, cardiac function, neuromuscular fatigue and function, blood volume regulation, autonomic control, and micro and macro vascular function. A total of 335 study sessions were conducted over three weeks at 5050m. In addition to an overview of this expedition and arterial blood gas data from Sherpa, suggestions for scientists aiming to perform field-based altitude research are also presented. Together, these findings will contribute to our understanding of human acclimatization and adaptation to the stress of residence at high-altitude

    Similarity between carotid and coronary artery responses to sympathetic stimulation and the role of alpha-1 receptors in humans.

    Get PDF
    BACKGROUND: Carotid artery (CCA) dilation occurs in healthy subjects during cold pressor test (CPT), whilst the magnitude of dilation relates to cardiovascular risk. To further explore this phenomena and mechanism, we examined carotid artery responses to different sympathetic tests, with and without Ī±1-receptor blockade, and assessed similarity to these responses between carotid and coronary arteries. METHODS: In randomised order, 10 healthy participants (25{plus minus}3yrs) underwent sympathetic stimulation using CPT (3-minutes left hand immersion in ice-slush) and lower-body negative pressure (LBNP). Before and during sympathetic tests, CCA diameter and velocity (Doppler ultrasound) and left anterior descending (LAD) coronary artery velocity (echocardiography) were recorded across 3-min. Measures were repeated 90-min following selective Ī±1-receptor blockade via oral Prazosin (0.05mg-per-kg bodyweight). RESULTS: CPT significantly increased CCA diameter, LAD maximal velocity and velocity-time integral area-under-the-curve (all P<0.05). In contrast, LBNP resulted in a decrease in CCA diameter, LAD maximal velocity and velocity time integral (VTI, all P<0.05). Following Ī±1-receptor blockade, CCA and LAD velocity responses to CPT were diminished. In contrast, during LBNP (-30mmHg), Ī±1-receptor blockade did not alter CCA or LAD responses. Finally, changes in CCA diameter and LAD VTI-responses to sympathetic stimulation were positively correlated (r=0.66, P<0.01). CONCLUSION: We found distinct carotid artery responses to different tests of sympathetic stimulation, where Ī±1-receptors partly contribute to CPT-induced responses. Finally, we found agreement between carotid and coronary artery responses. These data indicate similarity between carotid and coronary responses to sympathetic tests and the role of Ī±1-receptors that is dependent on the nature of the sympathetic challenge

    Acute reductions in hematocrit increase flow-mediated dilation independent ofresting nitric oxide bioavailability in humans

    Get PDF
    Hemoglobin (Hb) may impact the transduction of endotheliumā€dependent and nitric oxide (NO) mediated vasodilator activity, given its contribution to shear stress stimuli and diverse biochemical reactions with NO. We hypothesized that an acute reduction in [Hb] and hematocrit (Hct) would increase brachial artery flowā€mediated dilation (FMD). In eleven healthy males (28 Ā± 7 years; 23 Ā± 2 kg māˆ’2), FMD (Duplex ultrasound), arterial blood gases, Hct and [Hb], blood viscosity, and NO metabolites (ozoneā€based chemiluminescence) were measured before and after isovolumic hemodilution, where āˆ¼20% of whole blood was removed and replaced with 5% human serum albumin. Hemodilution reduced Hct by 18 Ā± 2% (P < 0.001) and whole blood viscosity by 22 Ā± 5% (P < 0.001). Plasma nitrite (P = 0.01), Sā€nitrosothiols (P = 0.03), and total red blood cell NO (P = 0.001) were collectively reduced by āˆ¼15ā€“40%. Brachial artery FMD increased by āˆ¼160% from 3.8 Ā± 2.1 to 9.7 Ā± 4.5% (P = 0.004). Statistical covariation for the shear stress stimulus did not alter FMD, indicating that the increase in FMD was not directly related to alterations in whole blood viscosity and the shear stimulus. Collectively, these findings indicate that hemoglobin scavenging of NO appears to be an important factor in the regulation of FMD under normal conditions through constraint of endotheliumā€dependent NOā€mediated vasodilation in healthy humans

    Chemoreceptor responsiveness at sea level does not predict the pulmonary pressure response to high altitude

    Get PDF
    The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA), HVR at SL may not predict PASP at HA. We hypothesized that resting peripheral oxyhemoglobin saturation (SpO2) at HA would correlate better than HVR at SL to PASP at HA. In 20 participants at SL, we measured normobaric, isocapnic HVR (L/minĀ·-%SpO2 -1) and resting PASP using echocardiography. Both resting SpO2 and PASP measures were repeated on day 2 (n=10), days 4-8 (n=12), and 2-3 weeks (n=8) after arrival at 5050m. These data were also collected at 5050m on life-long HA residents (Sherpa; n=21). Compared to SL, SpO2 decreased from 98.6 to 80.5% (P<0.001), while PASP increased from 21.7 to 34.0mmHg (P<0.001) after 2-3 weeks at 5050m. Isocapnic HVR at SL was not related to SpO2 or PASP at any time point at 5050m (all P>0.05). Sherpa had lower PASP (P<0.01) than lowlanders on days 4-8 despite similar SpO2. Upon correction for hematocrit, Sherpa PASP was not different from lowlanders at SL, but lower than lowlanders at all HA time points. At 5050m, whilst SpO2 was not related to PASP in lowlanders at any point (all R2=0.50), there was a weak relationship in the Sherpa (R2=0.16; P=0.07). We conclude that neither HVR at SL nor resting SpO2 at HA correlates with elevations in PASP at HA

    Reduced blood flow through intrapulmonary arteriovenous anastomoses at rest and during exercise in lowlanders during acclimatization to high altitude

    Get PDF
    Blood flow through intrapulmonary arteriovenous anastomoses (QIPAVA ) is elevated during exercise at sea level (SL) and at rest in acute normobaric hypoxia. Following high altitude (HA) acclimatization, resting QIPAVA is similar to SL, but it is unknown if this is true during exercise at HA. We reasoned that exercise at HA (5,050 m) would exacerbate QIPAVA due to heightened pulmonary arterial pressure. Using a supine cycle ergometer, seven healthy adults free from intracardiac shunts underwent an incremental exercise test at SL (25, 50, 75% of SL VO2peak ) and at HA (25, 50% of SL VO2peak ). Echocardiography was used to determine cardiac output (Q) and pulmonary artery systolic pressure (PASP) and agitated saline contrast was used to determine QIPAVA (bubble score; 0-5). The principal findings were: (1) Q was similar at SL-rest (3.9 +/- 0.47 l min-1 ) compared with HA-rest (4.5 +/- 0.49 l min-1 ; P = 0.382), but increased from rest during both SL and HA exercise (P < 0.001); (2) PASP increased from SL-rest (19.2 +/- 0.7 mmHg) to HA-rest (33.7 +/- 2.8 mmHg; P = 0.001) and, compared with SL, PASP was further elevated during HA exercise (P = 0.003); (3) QIPAVA was increased from SL-rest (0) to HA-rest (median = 1; P = 0.04) and increased from resting values during SL exercise (P < 0.05), but were unchanged during HA exercise (P = 0.91), despite significant increases in Q and PASP. Theoretical modeling of microbubble dissolution suggests that the lack of QIPAVA in response to exercise at HA is unlikely caused by saline contrast instability
    corecore