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Abstract 24 

Impaired myocardial systolic contraction and diastolic relaxation have been suggested as possible 25 

mechanisms contributing to the decreased stroke volume (SV) observed at high altitude (HA). To 26 

determine whether intrinsic myocardial performance is a limiting factor in the generation of SV at 27 

HA, we assessed left ventricular (LV) systolic and diastolic mechanics and volumes in 10 healthy 28 

participants (aged 32 ± 7; mean ± SD) at rest and during exercise at sea level (SL; 344 m) and 29 

following 10 days at 5050 m. In contrast to SL, LV end-diastolic volume was ~19% lower at rest 30 

(p=0.004) and did not increase during exercise despite a greater untwisting velocity. Furthermore, 31 

resting SV was lower at HA (~17%; 60±10 vs. 70±8 ml) despite higher LV twist (43%), apical rotation 32 

(115%) and circumferential strain (17%). With exercise at HA, the increase in SV was limited (12 ml 33 

vs. 22 ml at SL), and LV apical rotation failed to augment.  For the first time, we have demonstrated 34 

that EDV does not increase upon exercise at high altitude despite enhanced in vivo diastolic 35 

relaxation. The increase in LV mechanics at rest may represent a mechanism by which SV is 36 

defended in the presence of a reduced EDV. However, likely due to the higher LV mechanics at rest, 37 

no further increase was observed up to 50% peak power. Consequently, whilst hypoxia does not 38 

suppress systolic function per se, the capacity to increase SV through greater deformation during 39 

submaximal exercise at HA is restricted.  40 
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Introduction 44 

During initial exposure to hypobaric hypoxia at high altitude (HA), cardiac output for a given absolute 45 

workload is increased to compensate for a lower arterial oxygen content before returning to 46 

baseline levels with acclimatization (8). However, after 2-5 days of acclimatization, the required 47 

cardiac output is generated through a lower stroke volume (SV) and higher heart rate (38). The 48 

reduced SV is suggestive of either lower ventricular filling, potentially caused in part by an impaired 49 

myocardial relaxation, or impaired ejection secondary to systolic contractile dysfunction. There is 50 

however, a paucity of data in humans supporting a direct effect of hypoxia on myocardial function at 51 

HA (25, 41).  52 

The suggestion that hypoxia may impair myocardial systolic function during exercise was proposed 53 

nearly 50 years ago (3) and has been revisited more recently (27-29). Negative inotropic effects of 54 

hypoxia (arterial oxygen tension of 44 mmHg) have been shown in intact animal models (39) and 55 

isolated myocardial fibers under severe hypoxia (1% O2) (33). Exercise training under hypobaric 56 

hypoxia is also associated with altered mechanical properties at a cellular level in rodents (9), 57 

although chronic hypoxia alone did not decrease myofilament sensitivity to calcium. However, in 58 

contrast to animal studies, data in humans indicate that systolic function is maintained or enhanced 59 

at HA. For example, Suarez, Alexander and Houston (37) reported the maintenance of systolic 60 

function after gradual decompression to a barometric pressure of 282 mmHg, a finding that was 61 

subsequently confirmed by numerous investigations during acute and prolonged hypoxic exposure 62 

(6, 10, 12, 23, 31). However, of these studies, only Suarez, Alexander and Houston (37) investigated 63 

systolic function during light exercise (60 W), where function appeared to be maintained. It is not 64 

known whether systolic function is maintained at higher exercise intensities.  65 

It has also been speculated that reduced oxygen availability may impair diastolic relaxation at HA 66 

(15, 18) and thus explain the decreased left ventricular (LV) end-diastolic volume (EDV) commonly 67 

observed (2, 6, 18). However, despite numerous studies reporting a decrease in plasma volume and 68 



altered transmitral filling patterns (2, 6, 20), myocardial relaxation has only previously been 69 

investigated during hypoxia in dogs (15), and no data exist examining LV relaxation during exercise at 70 

high altitude. Using sensitive, non-invasive imaging techniques (2D speckle tracking) it is now 71 

possible to examine the LV deformation mechanics (strain, twist and untwist velocity) that underpin 72 

LV systolic and diastolic function. LV strain and twist have been shown to be sensitive measures of 73 

global and regional myocardial function, and reveal sub-clinical dysfunction in patients where 74 

ejection fraction is unchanged (16, 22). In addition, diastolic LV untwist velocity correlates well with 75 

invasive measures of LV stiffness and provides a temporal link between relaxation and the 76 

development of intraventricular pressure gradients (30, 43). Therefore, examination of LV mechanics 77 

at HA may determine whether the decreased SV observed at HA is dependent on impaired 78 

myocardial relaxation and/or myocardial contractile dysfunction, or confirm previous findings of 79 

preserved ventricular function during exercise (37). 80 

We therefore assessed systolic and diastolic ventricular mechanics during incremental exercise at 81 

sea level and HA to examine whether impaired myocardial relaxation or systolic dysfunction explains 82 

the previously reported reduction in SV at HA. We hypothesized that at HA, (i) ventricular filling 83 

would be lower at rest and during exercise and would be accompanied by a reduction in untwist 84 

velocity and (ii) systolic mechanics would be impaired during exercise at HA.   85 



Materials and Methods 86 

Participants. All experimental procedures and protocols were approved by the Clinical Research 87 

Ethics Board at the University of British Columbia and the Nepal Health Medical Research Council, 88 

and conformed to the standards set by the Declaration of Helsinki. Ten Caucasian lowlanders (nine 89 

male) aged 32 ± 7 years (mean ± SD), with a height of 176 ± 7 cm and a mass of 80 ± 10 kg, provided 90 

informed consent and volunteered to participate in the study. All participants were free from 91 

respiratory and cardiovascular disease and were not taking any prescription medications. 92 

Experimental Design and Protocol. The experimental design required two periods of data collection, 93 

each consisting of two separate laboratory visits separated by 24 hours. Within each period, the first 94 

visit was to determine peak power, while the second was to assess cardiac function at rest and 95 

during exercise. For the determination of peak power, participants performed an incremental 96 

exercise test to volitional fatigue on a purpose built, portable supine ergometer close to sea level 97 

(SL; Kelowna, Canada; 344 m) and 10 days after arrival at the Ev-K2-CNR Pyramid Laboratory 98 

(Lobuche, Nepal; 5050 m). During the incremental test, power output was increased in a stepwise 99 

fashion by 50 W every two minutes until fatigue. Participants were asked to maintain a steady 100 

cadence and resistance was adjusted by a test administrator. The maximum workload achieved was 101 

recorded in order to calculate relative workloads for the graded exercise test.  The following day, 102 

venous blood samples were taken in the supine position to assess total hemoglobin concentration 103 

(HemoCue®, Ängelholm, Sweden) and hematocrit (Micro Hematocrit Reader). Altitude-mediated 104 

reductions in plasma volume were then estimated from hemoglobin and hematocrit (11) assuming 105 

erythropoiesis to have had only minor effects on hemoglobin content after 10 days at HA (32).   106 

Following blood sampling, a brief echocardiographic examination was completed in the left lateral 107 

decubitus position. Participants were then asked to complete a discontinuous, graded exercise 108 

challenge at 10, 30 and 50% of the peak power achieved during the preceding maximal test at the 109 

corresponding altitude. Exercise bouts lasted four minutes and were separated by four minutes of 110 



rest. Echocardiographic image acquisition was completed during the final two minutes of exercise. 111 

During echocardiography, measurements were made of blood pressure using a manual 112 

sphygmomanometer, arterial oxygen saturation (SpO2) from finger pulse oximetry (Nonin Onyx 113 

Oximeter, Plymouth, MN) and heart rate from a 3-lead ECG (Vivid q, GE Medical Systems, Israel Ltd) 114 

at the beginning and end of the two-minute imaging protocol and averaged.  115 

This study was conducted as part of a large-scale high altitude research expedition. Due to the 116 

nature of high altitude research, participants recruited for this study also took part in a number of 117 

other investigations (1). Therefore, particular attention was paid to the timing and management of 118 

experiments to ensure there was no potential for confounding results. In addition, some of the 119 

resting cardiac data from a selection of our participants (n=9) has already been published (34). 120 

However, these data were only used to compare resting LV function with highland natives.  121 

Transthoracic Echocardiography. Echocardiographic images were obtained by the same highly 122 

trained sonographer using a commercially available ultrasound system (Vivid q, GE Medical Systems, 123 

Israel Ltd) with a 1.5-4 MHz phased array transducer. Parasternal short-axis and apical four chamber 124 

views were recorded and three consecutive cardiac cycles were stored for analysis offline (Echopac, 125 

GE Medical, Horton, Norway). Left ventricular end-systolic volume (ESV) and end-diastolic volume 126 

(EDV) were calculated from planar tracings of the LV endocardial border in the apical four-chamber 127 

view in accordance with the European Society of Cardiology (24). Left ventricular stroke volume and 128 

ejection fraction were then calculated. Pulmonary artery systolic pressure was quantified as the 129 

maximum systolic pressure gradient across the tricuspid valve (∆Pmax) (4). Peak systolic regurgitation 130 

jet velocity (V) was measured using continuous wave Doppler and the peak systolic right ventricle 131 

(RV) to right atrium (RA) pressure gradient was calculated using the simplified Bernoulli equation 132 

(4V2). Due to the difficult and time consuming nature of this measurement during exercise, it was 133 

only attempted at 50% peak power and accurately obtained in 60% of the participants. 134 

 135 



Left ventricular circumferential strain, rotation and their respective deformation rates were assessed 136 

from parasternal short-axis views obtained from the LV base at the level of the mitral valve and the 137 

LV apex. The LV apex was defined as the point just above end-systolic luminal obliteration (40) and 138 

obtained by moving the transducer one-two inter-costal spaces caudally from the basal position to 139 

align with the apical short-axis. Left ventricular longitudinal strain and strain rate were analyzed 140 

from an apical four chamber view. Image analysis was performed offline using 2D speckle tracking to 141 

assess global rotation, rotational velocity, strain and strain rate. Apical frame-by-frame data were 142 

subtracted from basal data to calculate LV twist and untwist (Echopac, GE Medical, Horten, Norway, 143 

version 110.1.1). Peak untwist velocity was identified as the highest point of the first peak in 144 

diastole. In order to time-align and adjust for inter-individual variability of heart rate, frame-by-145 

frame data were exported to custom-made software that completed cubic spline interpolation to 146 

produce 600 data points for both the systolic and diastolic periods as previously described (34, 35). 147 

Intra-observer coefficient of variation of the sonographer in the present study for twist, systolic twist 148 

velocity and untwisting velocity are 8.1%, 7.8% and 11%, respectively.  149 

Statistics. Results are presented as means ± SD. Differences between conditions and exercise 150 

intensities were analyzed using repeated measures two-way ANOVA, with altitude and exercise 151 

intensity as within-subject factors (IBM SPSS for Windows, V20, Armonk, NY). When F was 152 

significant, pair-wise comparisons were carried out post hoc using paired-samples t-test with 153 

Bonferroni correction. Relationships were determined using non-linear regression analysis 154 

(GraphPad Prism for Windows, Version 5.0.1, Dan Diego, California, USA) with alpha set a priori to 155 

0.05.   156 



Results 157 

Maximal incremental exercise test 158 

Exposure to HA reduced maximal aerobic power output by 44%. At exhaustion, SpO2 was 96 ± 3% 159 

and 72 ± 4% at sea level and HA, respectively.  160 

Systemic and pulmonary response to incremental exercise 161 

Plasma volume decreased by 18% with HA exposure (P<0.05). Resting mean arterial pressure (MAP) 162 

was higher at HA but increased to a lesser extent with incremental exercise (Figure 1; interaction 163 

P<0.05). After ascent to 5050 m, resting pulmonary artery systolic pressure increased from 16.0 ± 1.1 164 

to 28.9 ± 6.4 mmHg (P<0.05) compared to sea level and remained elevated during exercise (Figure 165 

2). From rest to 50% peak power,  ∆Pmax increased by 49%  and 50% at sea level and HA, respectively 166 

(Figure 2). 167 

Cardiac output was the same at rest between conditions but increased to a greater extent at sea 168 

level, such that there was a 25% difference at 50% peak power (P<0.01; Table 1). The higher cardiac 169 

output at sea level was driven by a larger SV, as heart rate was not different between conditions. 170 

The higher SV at sea level reflected a significantly larger EDV and ESV with a lower ejection fraction; 171 

however, by 50% peak power, previous differences in ejection fraction between sea level and HA 172 

were no longer present. With the onset of exercise, EDV increased at sea level but not at HA (Figure 173 

1 and Table 1).   174 

 175 

 176 

 177 

 178 



Left ventricular diastolic mechanics 179 

Left ventricular untwist velocity and apical diastolic rotational velocity both increased with 180 

incremental exercise and were significantly higher at HA compared to sea level (Table 2; Figure 3). 181 

There was, however, no significant interaction between conditions (exercise intensity vs. altitude) 182 

and basal rotational velocity was not different at HA. In addition to changes in untwist velocity, the 183 

slope of the relationship between systolic and diastolic untwisting was altered, in that untwisting 184 

velocity was higher at HA for a given systolic twist velocity (Figure 3).  185 

Left ventricular systolic mechanics 186 

LV twist was higher at HA compared to sea level driven by an increase in apical rotation with no 187 

significant effect of altitude on basal rotation. There was, however, no difference in peak twist and 188 

apical rotation at 50% peak power between sea level and HA,. Therefore, apical rotation did not 189 

augment with exercise at HA (Table 2 and Figure 4a). Higher LV twist and apical rotation were also 190 

accompanied by greater velocities at HA. In contrast to changes in apical rotation, apical 191 

circumferential strain and strain rate increased with submaximal incremental exercise in both 192 

conditions. However, higher resting strain and strain rate at HA meant the magnitude of increase 193 

during exercise was smaller than at sea level (interaction P<0.01; Table 2), mirroring the response in 194 

rotational mechanics. Although longitudinal strain and strain rate increased with exercise intensity, 195 

and strain rate was higher at HA, the profiles were not different between sea level and HA.  196 

Relations between left ventricular volumes and mechanics  197 

The close relation between twist and apical rotation with SV during incremental exercise at sea level 198 

was not evident at HA (Figure 4b). Elevated resting systolic mechanics resulted in a rightward shift of 199 

the relation between SV with twist and apical rotation. Higher resting apical rotation (115%) meant 200 

there was no increase during incremental exercise and SV only increased by 20% at HA compared to 201 

a 31% increase at sea level.  202 

203 



Discussion 204 

The primary aim of this study was to determine whether ten days of exposure to hypobaric hypoxia 205 

impairs LV contractile function and/or diastolic relaxation during incremental exercise. There were 206 

three novel findings (1) in contrast to sea level, LV EDV does not increase from rest to exercise at HA; 207 

(2) despite the lack of increase in EDV, diastolic untwisting was enhanced at HA and the coupling of 208 

systolic-diastolic twist velocity was preserved, and; (3) in contrast to our hypothesis, despite lower 209 

arterial oxygenation, ejection fraction was higher at HA and coincided with greater twist, rotation 210 

and strain. Thus, decreased SV observed during submaximal exercise at HA is not explained by 211 

impaired systolic contractile function or myocardial relaxation per se, and is more likely explained by 212 

a decreased ventricular filling pressure.  213 

Decreased left ventricular filling and enhanced myocardial relaxation at 5050 m 214 

The increase in SV observed during submaximal incremental exercise at sea level is partly the result 215 

of an increase in EDV (Sundstedt, Hedberg et al. 2004). However, at HA EDV did not increase with 216 

exercise which is indicative of a limitation to ventricular filling, to which three possible mechanisms 217 

have been proposed; (i) impaired myocardial relaxation (15, 18), (ii) lower ventricular preload 218 

secondary to decreased blood volume (6), and (iii) higher pulmonary artery pressure limiting right 219 

ventricular systolic performance (26).  220 

In contrast to the proposed impairment of myocardial relaxation, we found LV diastolic untwisting 221 

velocity to be significantly enhanced at HA during both rest and exercise despite lower absolute 222 

exercise intensities and the same heart rate. In addition, the close relation between systolic twist 223 

velocity and diastolic untwist velocity was altered such that untwist velocity was greater for a given 224 

systolic velocity (Figure 3). Combined, these data indicate that myocardial relaxation and the 225 

coupling with systolic twist normally expected are preserved or even enhanced during short-term 226 

exposure to HA. Whilst speculative, It would appear the myocyte components responsible for the 227 

restoring forces in the myocardial fibers appear to be unaffected by moderate-severe levels of 228 



arterial deoxygenation and subsequent changes in cardiac metabolism (18). In addition to the impact 229 

at HA, this could have relevance for a myriad of clinical conditions where transient arterial 230 

hypoxemia is present, such as an acute exacerbation of chronic obstructive lung disease.  231 

The reduction in SV observed at rest and during sub-maximal exercise at HA has also previously been 232 

attributed to a decrease in PV (6, 20). However, when lowlanders were made hypervolemic through 233 

the infusion of 1 liter of 6% dextran after nine weeks of residence at 5260 m, SV remained the same 234 

and HR increased to compensate for the hemodilution (7). In addition, from studies performed by 235 

Calbet, Radegran, Boushel, Sondergaard, Saltin and Wagner (7) and Robach, Dechaux, Jarrot, Vaysse, 236 

Schneider, Mason, Herry, Gardette and Richalet (32), only the latter found PV expansion to increase 237 

VO2 peak at HA. Neither study reported LV EDV and importantly, both employed upright cycle 238 

ergometry as opposed to the supine modality used in the present investigation. During exercise on 239 

the supine ergometer developed for this study, the torso was in a horizontal position with a slight 240 

elevation (∼25 cm) of both feet when the pedals were in the neutral position. This elevation, which 241 

was consistent in both trials, would have likely aided venous return and could negate the effect of a 242 

decreased blood volume at HA by transiently increasing central blood volume. Elevation of the feet 243 

combined with increased muscle pump activity would normally be expected to increase EDV, as was 244 

evident at sea level in the present study. However, as both EDV and SV were lower at rest and during 245 

exercise at HA, it would appear an alternative mechanism other than blood volume per se was the 246 

limiting factor in LV EDV.  247 

Pulmonary artery pressure was higher at rest and 50% peak power at HA compared to sea level. This 248 

is to be expected, as hypoxia is known to induce pulmonary vasoconstriction (HPV) almost 249 

immediately upon exposure (25). In response to HPV, we have previously shown RV longitudinal 250 

systolic function and SV to be decreased at HA with no change in RV end-diastolic area (34). 251 

Collectively, these findings indicate that increased pulmonary artery pressure likely reduces RV SV 252 

which would in turn affect LV filling. This is supported by investigations that pharmacologically 253 



reversed HPV and demonstrated an increased VO2 peak (13, 19, 26). Further work is required to 254 

establish causality between HPV and decreased LV EDV during exercise, especially during exercise in 255 

an upright posture.  256 

Higher ejection fraction and greater twist, apical rotation and strain during submaximal exercise at 257 

5050 m. 258 

Very limited data exist on detailed LV function during exercise at HA, which has led to speculation 259 

that hypoxia may directly impair contractile function. Similar to Suarez, Alexander and Houston (37), 260 

we observed a higher ejection fraction at rest and during incremental exercise at HA. However, 261 

ejection fraction alone does not solely reflect systolic function due to its dependency on diastolic 262 

filling, and more sensitive measures can assess the underlying function (21). The higher ejection 263 

fraction in the current study was coupled with higher LV twist, apical rotation and their respective 264 

velocities, indicating a short-term response to HA exposure in LV function in order to maximize SV 265 

when EDV is reduced. In experimental models, myocardial ischemia lowers LV twist and strain, a 266 

change that is considered to reflect impaired function (5, 43). However, the increased LV systolic 267 

mechanics evident in the present study indicate that moderate-severe hypoxemia (SpO2 72%) in 268 

healthy individuals does not impair systolic performance. The increase in mechanics is likely 269 

mediated through a combination of decreased LV preload and increased sympathetic nerve activity, 270 

as both stimuli are known to increase LV mechanical parameters such as apical rotation (14, 17). An 271 

increase in LV twist has also been reported during acute (30 minutes) normobaric hypoxia (10). 272 

However, unlike acute normobaric hypoxia where LV twist is higher due to systemic vasodilation, we 273 

report a concomitant increase in MAP. Under these hemodynamic conditions, one would expect LV 274 

twist to decrease (42), indicating that different regulatory mechanisms may exist for LV twist 275 

between acute and chronic hypoxic exposure.  276 

 277 



Modified interaction between left ventricular mechanics and volumes at 5050 m. 278 

Previously, the maintenance or increase in ejection fraction at HA has been reported as ‘enhanced’ 279 

systolic function (37). Whilst this indicates that the LV has the capacity to respond to the acute 280 

challenge, particularly at rest, it does not necessarily indicate an exclusively positive outcome due to 281 

the load-dependency of ejection fraction discussed above. The higher twist, apical rotation and 282 

strain at HA likely meant that cardiac mechanics were closer to the ‘ceiling’ previously reported 283 

during incremental exercise (36). Consequently, apical rotation at HA did not increase with 284 

increasing exercise intensity, and the rise in SV during incremental exercise was much smaller. 285 

Therefore, higher resting systolic mechanics reduce the functional reserve normally available during 286 

incremental exercise. Figure 4b illustrates this, where from rest to 50% peak power twist increases 287 

by 82% at sea level but only 23% at HA, with no significant change in apical rotation. Moreover, the 288 

increase in SV was 15% greater at SL than at HA. It is worth noting that apical rotational velocity was 289 

still able to increase beyond the limit to apical rotation, suggesting the sympathetically-mediated 290 

response to exercise was still evident. Therefore, whilst maximum deformation was achieved, the 291 

rate of deformation could still be augmented as heart rate increased. As mentioned above, EDV is 292 

the major determinant of SV during exercise, and it would appear that at HA impaired ventricular 293 

filling alters the relation between twist and SV normally observed at sea level. The shortening of the 294 

LV functional reserve at HA appears to limit the increase in SV during exercise. As such, these 295 

changes could ultimately negatively impact exercise capacity, especially at higher intensities. 296 

Limitations and future directions 297 

The current study only reports data up to 50% maximal exercise due to limitations in 298 

echocardiographic image acquisition at higher exercise intensities in a field research setting. To 299 

obtain optimal images of the LV, participants were required to perform an end-expiration breath 300 

hold during image capture. During higher intensity exercise at 5050 m this became extremely 301 

difficult for the participants and meant image acquisition was not possible. Imaging of the RV was 302 



also attempted, but due to poor acoustic windows reliable imaging was not possible in our 303 

participants. The authors acknowledge that the assessment of LV volumes through single plane is 304 

not the gold standard. However, this method was chosen due to the shorter time required for single 305 

image acquisition. Future work should aim to determine the relative contribution of higher 306 

pulmonary pressures and decreased blood volume on LV EDV during exercise and the consequences 307 

for systolic function by lowering pulmonary pressure and normalizing blood volume, respectively. 308 

Additionally, future work examining the heart at HA should also incorporate an assessment of right 309 

ventricular function and the potential for region-specific LV-RV interaction during exercise.  310 

 311 

Conclusions 312 

At HA, LV filling is impaired during incremental submaximal exercise despite enhanced myocardial 313 

diastolic mechanics. The resultant decrease in EDV and its lack of increase with exercise requires a 314 

higher ejection fraction mediated through greater twist, rotation and strain. Higher resting 315 

mechanics and lower EDV result in a smaller mechanical and functional reserve available during 316 

incremental exercise at HA.  Combined, this means the lower SV observed at HA is not due to 317 

impairment of myocardial relaxation or hypoxic systolic dysfunction per se, rather the inability to 318 

increase EDV, which is most likely due to higher pulmonary artery pressure.  319 
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Tables 453 

Table 1. Cardiovascular responses to incremental exercise at sea level and 5050 m.  454 

 455 

Data are mean ± SD. SL, sea level; HA, high altitude; MAP, mean arterial pressure; SpO2, arterial 456 
oxygen saturation; EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke volume; Qȩ , 457 
cardiac output. *P <0.05 vs. rest. † P <0.05 vs. 10%. ‡ P <0.05 vs. 30%. NS, not significant. 458 

  459 

Ex Intensity SL vs. HA Interaction
SL 76 ± 6 88 ± 9 * 94 ± 7 *† 104 ± 8 *†‡
HA 94 ± 4 100 ± 5 * 103 ± 6 * 110 ± 5 *†‡

SL 98 ± 2 98 ± 2 97 ± 2 96 ± 3

HA 81 ± 3 79 ± 2 74 ± 6 72 ± 6

SL 54 ± 6 75 ± 12 * 95 ± 13 *† 115 ± 12 *†‡
HA 64 ± 17 76 ± 19 * 96 ± 17 *† 111 ± 17 *†‡

SL 128 ± 18 139 ± 19 * 144 ± 30 140 ± 24 *
HA 104 ± 18 104 ± 16 102 ± 15 106 ± 16

SL 58 ± 11 60 ± 11 56 ± 13 48 ± 9 *†

HA 44 ± 11 37 ± 6 33 ± 6 * 33 ± 7 *

SL 70 ± 8 79 ± 10 * 88 ± 18 * 92 ± 18 *†

HA 60 ± 10 67 ± 11 69 ± 10 * 72 ± 11 *

SL 3.8 ± 0.5 5.8 ± 1.3 * 8.4 ± 1.7 *† 10.6 ± 2.3 *†‡
HA 3.8 ± 0.7 5.0 ± 1.0 * 6.5 ± 0.6 *† 7.9 ± 1.3 *†‡

SL 55 ± 3 57 ± 3 61 ± 3 66 ± 4

HA 58 ± 5 64 ± 3 68 ± 3 69 ± 3

Workload

(%peak power output)

Rest 10% 30% 50%

MAP (mm Hg) P<0.001 P<0.001

SpO2 (%) P<0.001 P<0.01

P<0.001

P<0.001

Heart Rate (bpm) NS P<0.01

EDV (ml) P<0.001 P<0.05

P<0.001

P<0.01

ESV (ml) P<0.001 P<0.05

SV (ml) P<0.01 P<0.05

P<0.001

P<0.001

Q̇ (l/min) P<0.01 P<0.001

Ejection Fraction (%) P<0.001 NS

P<0.01

P<0.001



Table 2. Peak LV twist, basal, apical and longitudinal mechanics at rest and during incremental 460 
exercise at sea level and 5050 m.  461 

 462 

 463 

Data are mean ± SD. SL, sea level; HA, high altitude. *P <0.05 vs. rest. † P <0.05 vs. 10%. ‡ P <0.05 vs. 464 
30%. NS, not significant. Untwisting velocity; peak during early diastole.  465 

  466 

Ex Intensity SL vs. HA Interaction
LV Twist Parameters

SL 13.2 ± 2.5 15.0 ± 4.1 19.1 ± 4.9 24.0 ± 6.5

HA 18.9 ± 6.2 19.9 ± 5.9 24.4 ± 6.0 23.2 ± 4.6

SL 85 ± 24 92 ± 34 140 ± 35 209 ± 56

HA 129 ± 51 144 ± 54 171 ± 44 220 ± 47

SL 122 ± 28 111 ± 44 172 ± 63 238 ± 76

HA 159 ± 38 178 ± 44 238 ± 76 308 ± 82

LV Basal Parameters
SL 6.2 ± 1.9 5.6 ± 2.7 8.2 ± 3.0 8.5 ± 3.1

HA 3.3 ± 2.2 5.3 ± 3.1 6.3 ± 1.9 8.0 ± 2.8

SL 63 ± 22 60 ± 19 98 ± 28 132 ± 38

HA 68 ± 25 80 ± 25 95 ± 28 138 ± 35

SL 18.2 ± 2.8 15.8 ± 2.5 16.5 ± 5.4 15.9 ± 5.7

HA 19.5 ± 3.5 17.4 ± 4.4 20.5 ± 4.4 20.3 ± 3.1

SL 1.12 ± 0.13 0.97 ± 0.19 1.22 ± 0.22 1.43 ± 0.19

HA 1.25 ± 0.28 1.18 ± 0.28 1.58 ± 0.38 1.76 ± 0.35

LV Apical Parameters
SL 7.4 ± 2.5 10.2 ± 2.5 11.6 ± 3.5 17.0 ± 5.4 *†
HA 15.9 ± 4.7 14.7 ± 4.7 18.6 ± 5.7 16.2 ± 3.2

SL 52 ± 25 69 ± 22 97 ± 25 189 ± 57

HA 103 ± 38 110 ± 35 143 ± 57 210 ± 51

SL 25.1 ± 4.7 24.1 ± 4.7 29.8 ± 7.0 † 31.4 ± 7.3

HA 29.4 ± 6.0 33.6 ± 5.1 39.1 ± 4.4 *† 31.8 ± 5.1

SL 1.40 ± 0.28 1.37 ± 0.28 1.90 ± 0.47 *† 2.70 ± 0.73

HA 2.12 ± 0.70 2.40 ± 0.89 3.06 ± 0.54 *† 3.04 ± 0.51

LV Longitudinal Parameters
SL 19.3 ± 2.5 20.2 ± 2.2 22.2 ± 2.2 23.5 ± 1.6

HA 18.6 ± 2.2 21.2 ± 2.2 22.5 ± 2.2 23.2 ± 2.8

SL 0.97 ± 0.16 1.07 ± 0.16 1.31 ± 0.19 1.66 ± 0.19

HA 1.05 ± 0.16 1.24 ± 0.19 1.53 ± 0.19 1.81 ± 0.28 P<0.05 NS

P<0.001 P<0.01

Longitudinal Strain (%) NS NS

P<0.01 NS

Apical Circumferential Strain (%) P<0.001 P<0.01

P<0.001

P<0.001

P<0.001

P<0.001

P<0.001

P<0.05 NS

Apical Rotation (°) P<0.001 P<0.01

NS NS

Basal Circumferential Strain (%) P<0.01 NS

P<0.001

NS

P<0.001

P<0.01

P<0.001 NS

Basal Rotation (°) NS NS

P<0.05 NS

Systolic Twist Velocity (° s-1) P<0.05 NS

P<0.01

P<0.001

P<0.001

P<0.001

Workload
(%peak power output)

Rest 10% 30% 50%

Twist (°)

Untwisting Velocity (° s-1)

Basal Rotational Velocity (° s-1)

Basal Circumferential Strain Rate (s-1)

Apical Rotational Velocity (° s-1)

Apical Circumferential Strain Rate (s-1)

Longitudinal Strain Rate (s-1)



Figures and Legends 467 

Figure 1. Left ventricular volumes and systemic cardiovascular responses to incremental exercise 468 

at sea level (SL) and high attitude (HA). Cardiac output was the same at rest but increased to a 469 

greater extent at sea level achieved through a greater stroke volume (SV). End-diastolic volume 470 

(EDV) was lower at HA and did not increase with exercise, meaning a greater ejection fraction was 471 

required at HA. MAP, mean arterial pressure; SpO2, arterial oxygen saturation; ESV, end-systolic 472 

volume. Filled circles represent sea level and open squares the high altitude. Data are mean ± SEM. 473 

For P value of ANOVA and post hoc analysis of exercise intensities please refer to Table 1. §P<0.05 474 

vs. Sea level and  #P<0.01 vs. Sea level where interaction P<0.05.  475 

Figure 2. Individual response of pulmonary artery systolic pressure at rest and 50% peak power at 476 

sea level and 5050 m. Pulmonary artery systolic pressure increased from rest to exercise in both 477 

conditions and was higher in both HA conditions compared to sea level. *P<0.05 SL vs. HA and # 478 

P<0.05 rest vs. 50% exercise; n=6.  479 

Figure 3. Diastolic relaxation at sea level (SL) and high attitude (HA). Panels A and B display peak 480 

velocity and apical diastolic rotational velocity, respectively, during incremental exercise at sea level 481 

and high altitude. Peak untwisting velocity was higher at HA until 50% peak power, which was driven 482 

by an increase in apical diastolic rotational velocity. Panel C indicates that the strong relationship 483 

between systolic and diastolic twisting and untwisting velocities remained after acclimatization, 484 

although there was a greater untwisting velocity for a given systolic twist velocity at HA. As there 485 

was no significant increase in twist exercise intensity at HA, the relationship between untwist 486 

velocity and twist was altered (D). This suggests untwist velocity is able to increase beyond the 487 

limitation to twist to achieve total untwist at higher heart rates. Data are mean ± SEM. *P<0.05 main 488 

effect (seal level vs. high altitude).  489 



Figure 4. Peak twist, apical rotation and their relationship with stroke volume during incremental 490 

exercise at sea level (SL) and high attitude (HA). Panel A; twist and apical rotation were higher at 491 

rest and during sub-maximal exercise at HA, but there was no increase in apical rotation at HA. A 492 

combination of higher resting mechanics and absence of change with exercise meant a rightward 493 

shift in the exponential relationship between twist and apical rotation with stroke volume after HA 494 

exposure. Resting apical rotation at HA was equivalent to 50% peak power at sea level, suggesting 495 

the mechanical reserve had been fully utilized at rest in the hypoxic condition. Filled circles (A) and 496 

blue line (B) represent the sea level and open squares (A) and red line (B) the high altitude exercise 497 

conditions, respectively. Data are mean ± SEM. *P<0.05 main effect (sea level vs. high altitude; 498 

§P<0.05 vs. sea level and #P<0.01 vs. sea level where interaction effect P<0.05; for P value of ANOVA 499 

and post hoc analysis of exercise intensities please refer to Table 2. 500 

 501 
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Figure 3: 
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Figure 4: 
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