39 research outputs found
Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV
Using the quantum molecular dynamics approach, we analyze the results of the
recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and
150 AMeV. It turns out that in this energy region the transition toward a
participant-spectator scenario takes place. The large Au+Au system displays in
the simulations as in the experiment simultaneously dynamical and statistical
behavior which we analyze in detail: The composition of fragments close to
midrapidity follows statistical laws and the system shows bi-modality, i.e. a
sudden transition between different fragmentation pattern as a function of the
centrality as expected for a phase transition. The fragment spectra at small
and large rapidities, on the other hand, are determined by dynamics and the
system as a whole does not come to equilibrium, an observation which is
confirmed by FOPI experiments for the same system.Comment: published versio
Pion radii in nonlocal chiral quark model
The electromagnetic radius of the charged pion and the transition radius of
the neutral pion are calculated in the framework of the nonlocal chiral quark
model. It is shown in this model that the contributions of vector mesons to the
pion radii are noticeably suppressed in comparison with a similar contribution
in the local Nambu--Jona-Lasinio model. The form-factor for the process
gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in
satisfactory agreement with experimental data.Comment: 7 pages, 7 figure
Fragmentation in Peripheral Heavy-Ion Collisions: from Neck Emission to Spectator Decays
Invariant cross sections of intermediate mass fragments in peripheral
collisions of Au on Au at incident energies between 40 and 150 AMeV have been
measured with the 4-pi multi-detector INDRA. The maximum of the fragment
production is located near mid-rapidity at the lower energies and moves
gradually towards the projectile and target rapidities as the energy is
increased. Schematic calculations within an extended Goldhaber model suggest
that the observed cross-section distributions and their evolution with energy
are predominantly the result of the clustering requirement for the emerging
fragments and of their Coulomb repulsion from the projectile and target
residues. The quantitative comparison with transverse energy spectra and
fragment charge distributions emphasizes the role of hard scattered nucleons in
the fragmentation process.Comment: 5 pages, 5 eps figures, RevTeX4, submitted to Phys. Lett.
Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions
We study the anisotropy effects measured with INDRA at GSI in central
collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy.
The microcanonical multifragmentation model with non-spherical sources is used
to simulate an incomplete shape relaxation of the multifragmenting system. This
model is employed to interpret observed anisotropic distributions in the
fragment size and mean kinetic energy. The data can be well reproduced if an
expanding prolate source aligned along the beam direction is assumed. An either
non-Hubblean or non-isotropic radial expansion is required to describe the
fragment kinetic energies and their anisotropy. The qualitative similarity of
the results for the studied reactions suggests that the concept of a
longitudinally elongated freeze-out configuration is generally applicable for
central collisions of heavy systems. The deformation decreases slightly with
increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics
Source shape determination with directional fragment-fragment velocity correlations
Correlation functions, constructed from directional projections of the
relative velocities of fragments, are used to determine the shape of the
breakup volume in coordinate space. For central collisions of 129Xe + natSn at
50 MeV per nucleon incident energy, measured with the 4pi multi-detector INDRA
at GSI, a prolate shape aligned along the beam direction with an axis ratio of
1:0.7 is deduced. The sensitivity of the method is discussed in comparison with
conventional fragment-fragment velocity correlations.Comment: 12 pages, 5 figures, subm. to Phys. Lett.
Model-independent tracking of criticality signals in nuclear multifragmentation data
We look for signals of criticality in multifragment production in heavy-ion
collisions using model-independent universal fluctuations theory. The
phenomenon is studied as a function of system size, bombarding energy, and
impact parameter in a wide range of INDRA data. For very central collisions
(b/b_ma
Quinone-dependent delayed fluorescence from the reaction center of photosynthetic bacteria.
Millisecond delayed fluorescence from the isolated reaction center of photosynthetic bacteria Rhodobacter sphaeroides was measured after single saturating flash excitation and was explained by thermal repopulation of the excited bacteriochlorophyll dimer from lower lying charge separated states. Three exponential components (fastest, fast, and slow) were found with lifetimes of 1.5, 102, and 865 ms and quantum yields of 6.4 x 10(-9), 2.2 x 10(-9), and 2.6 x 10(-9) (pH 8.0), respectively. While the two latter phases could be related to transient absorption changes, the fastest one could not. The fastest component, dominating when the primary quinone was prereduced, might be due to a small fraction of long-lived triplet states of the radical pair and/or the dimer. The fast phase observed in the absence of the secondary quinone, was sensitive to pH, temperature, and the chemical nature of the primary quinone. The standard free energy of the primary stable charge pair relative to that of the excited dimer was -910 +/- 20 meV at pH 8 and with native ubiquinone, and it showed characteristic changes upon pH and quinone replacement. The interaction energy ( approximately 50 meV) between the cluster of the protonatable groups around GluL212 and the primary semiquinone provides evidence for functional linkage between the two quinone binding pockets. An empirical relationship was found between the in situ free energy of the primary quinone and the rate of charge recombination, with practical importance in the estimation of the free energy levels from the easily available lifetime of the charge recombination. The ratio of the slow and fast components could be used to determine the pH dependence of the free energy level of the secondary stable charge pair relative to that of the excited dimer
A pilot study of Cerasorb and Bio-Oss enhanced new bone formation in animal model
The aim of this pilot investigation was to develop a new animal model for studying the effects on osteogenesis of agents used in the guided bone regeneration technique. As test material, a mixture of two osseoconductive materials with different physico-chemical characteristics was used. One component of the mixture was Bio-Oss, a bovine hydroxyapatite; the other was Cerasorb, a synthetic tricalcium phosphate. The mixture consisited of 50 volume percent of Bio-Oss and 50 volume percent of Cerasorb. In
in vivo
pilot experiment, bone wounds were prepared in the proximal third of both femurs of rabbits. A Cerasorb + Bio-Oss mixture was inserted on the test side and the same amount of sterile buffered physiological solution on the control side. After healing for 4 weeks, the bone segments were embedded and cut without decalcification, using the Exact cutting and grinding system. The density of the newlyformed bone was evaluated histomorphometrically. On the Cerasorb + Bio-Oss test side the bone density was almost 1.5 times higher than that on the control side. These results demonstrated that the applied animal model is appropriate for investigation of the effects on osteogenesis of biocompatible graft materials such as Bio-Oss and Cerasorb