30 research outputs found

    Are the “100 of the world’s worst” invasive species also the costliest?

    Get PDF
    Biological invasions are increasing worldwide, damaging ecosystems and socioeconomic sectors. Two decades ago, the “100 of the world’s worst” invasive alien species list was established by the IUCN to improve communications , identifying particularly damaging ‘flagship’ invaders globally (hereafter, worst). Whilst this list has bolstered invader awareness, whether worst species are especially economically damaging and how they compare to other invaders (hereafter, other) remain unknown. Here, we quantify invasion costs using the most comprehensive global database compiling them (InvaCost). We compare these costs between worst and other species against sectorial, taxonomic and regional descriptors, and examine temporal cost trends. Only 60 of the 100 worst species had invasion costs considered as highly reliable and actually observed estimates (median: US43million).Onaverage,thesecostsweresignificantlyhigherthanthe463otherinvasivespeciesrecordedinInvaCost(median:US 43 million). On average, these costs were significantly higher than the 463 other invasive species recorded in InvaCost (median: US 0.53 million), although some other species had higher costs than most worst species. Damages to the environment from the worst species dominated, whereas other species largely impacted agriculture. Disproportionately highest worst species costs were incurred in North America, whilst costs were more evenly distributed for other species; animal invasions were always costliest. Proportional management expenditures were low for the other species, and surprisingly, over twice as low for the worst species. Temporally, costs increased more for the worst than other taxa; however, management spending has remained very low for both groups. Nonetheless, since 40 species had no robust and/or reported costs, the “true” cost of “some of the world’s worst” 100 invasive species still remains unknown

    Global economic costs of herpetofauna invasions

    Get PDF
    Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread, having caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled at 17.0 billion USbetween1986and2020,dividedsplitinto6.3billionUS between 1986 and 2020, divided split into 6.3 billion US for amphibians, 10.4 billion USforreptilesand334millionUS for reptiles and 334 million US for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor ( 99%), while for reptiles, impacts were reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time but peaked between 2011 and 2015 for amphibians and 2006 to 2010 for reptiles. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.info:eu-repo/semantics/publishedVersio

    Economic costs of biological invasions in the United Kingdom

    Get PDF
    Although the high costs of invasion are frequently cited and are a key motivation for environmental management and policy, synthesised data on invasion costs are scarce. Here, we quantify and examine the monetary costs of biological invasions in the United Kingdom (UK) using a global synthesis of reported invasion costs. Invasive alien species have cost the UK economy between US6.9billionand6.9 billion and 17.6 billion (£5.4 – £13.7 billion) in reported losses and expenses since 1976. Most costs were reported for the entire UK or Great Britain (97%); country-scale cost reporting for the UK's four constituent countries was scarce. Reports of animal invasions were the costliest (4.7billion),thenplant(4.7 billion), then plant (1.3 billion) and fungal (206.7million)invasions.Reporteddamagecosts(i.e.excludingmanagementcosts)werehigherinterrestrial(206.7 million) invasions. Reported damage costs (i.e. excluding management costs) were higher in terrestrial (4.8 billion) than aquatic or semi-aquatic environments (29.8million),andprimarilyimpactedagriculture(29.8 million), and primarily impacted agriculture (4.2 billion). Invaders with earlier introduction years accrued significantly higher total invasion costs. Invasion costs have been increasing rapidly since 1976, and have cost the UK economy $157.1 million (£122.1 million) per annum, on average. Published information on specific economic costs included only 42 of 520 invaders reported in the UK and was generally available only for the most intensively studied taxa, with just four species contributing 90% of species-specific costs. Given that many of the invasive species lacking cost data are actively managed and have well-recognised impacts, this suggests that cost information is incomplete and that totals presented here are vast underestimates owing to knowledge gaps. Financial expenditure on managing invasions is a fraction (37%) of the costs incurred through damage from invaders; greater investments in UK invasive species research and management are, therefore, urgently required

    Biological invasion costs reveal insufficient proactive management worldwide

    Get PDF
    Funding Information: The authors thank the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project and the work on InvaCost database development. The present work was conducted in the frame of InvaCost workshop carried in November 2019 (Paris, France) and funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC was funded through a Leverhulme Early Career Fellowship (ECF-2021-001) from the Leverhulme Trust and a Humboldt Postdoctoral Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed funds (187092 & 234597). CA was funded by the French National Centre for Scientific Research (CNRS). TWB acknowledges funding from the European Union's Horizon 2020 research and innovation programme Marie Skodowska-Curie fellowship (Grant No. 747120). FE was funded through the 2017?2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme, and with the funding organisation Austrian Science Foundation FWF (grant I 4011-B32). NK is funded by the basic project of Sukachev Institute of Forest SB RAS, Russia (Project No. 0287-2021-0011; data mining) and the Russian Science Foundation (project No. 21-16-00050; data analysis).Peer reviewedPublisher PD

    Damage costs from invasive species exceed management expenditure in nations experiencing lower economic activity

    Get PDF
    Financial disclosure The InvaCost project was funded by the French National Research Agency (ANR-14-CE02-0021), the BNP-Paribas Foundation Climate Initiative, the AXA Research Fund Chair of Invasion Biology of University Paris Saclay and by the BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios (AlienScenarios; BMBF/PT DLR 01LC1807C). M.K. received funding from the European Union's Horizon 2020 research programme under a Marie SkƂodowska-Curie grant agreement 899546. C.J.A.B. acknowledges the Australian Research Council (CE170100015) for support. A.B. acknowledges Azim Premji University's grants programme (UNIV-RC00326) for support.Peer reviewe

    Drivers of future alien species impacts: an expert‐based assessment

    Get PDF
    Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio‐economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid‐21st century. Based on responses from 36 experts in biological invasions, moderate (20%–30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions—transport, climate change and socio‐economic change—were predicted to significantly affect future impacts of alien species on biodiversity even under a best‐case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best‐case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post‐2020 Framework of the Convention on Biological Diversity

    Global economic costs of alien birds.

    No full text
    The adverse impacts of alien birds are widespread and diverse, and associated with costs due to the damage caused and actions required to manage them. We synthesised global cost data to identify variation across regions, types of impact, and alien bird species. Costs amount to US$3.6 billion, but this is likely a vast underestimate. Costs are low compared to other taxonomic groups assessed using the same methods; despite underreporting, alien birds are likely to be less damaging and easier to manage than many other alien taxa. Research to understand why this is the case could inform measures to reduce costs associated with biological invasions. Costs are biassed towards high-income regions and damaging environmental impacts, particularly on islands. Most costs on islands result from actions to protect biodiversity and tend to be low and one-off (temporary). Most costs at mainland locations result from damage by a few, widespread species. Some of these costs are high and ongoing (permanent). Actions to restrict alien bird invasions at mainland locations might prevent high, ongoing costs. Reports increased sharply after 2010, but many are for local actions to manage expanding alien bird populations. However, the successful eradication of these increasingly widespread species will require a coordinated, international response

    IPBES Invasive Alien Species Assessment, data management report of Chapter 4. Figure 4.27

    No full text
    <p>This data management report explains the development procedure of Figure 4.27.</p> <p>Figure 4.27 synthesises the cumulative economic costs of biological invasions as available in the literature and standardized in the InvaCost database (latest version 4.0 available at the time of writing this report): for all countries in the world, the 10 countries with the highest cumulative costs and the four major taxonomic groups, as well as the ten costliest taxa. Note that this figure represents data recorded in the latest version of the InvaCost database available at the time of writing this report, and then the proportions displayed here are likely to evolve as the database is updated over time. All cost information is regularly updated (Leroy et al., 2021 for the most up-to-date figures).</p> <p>Figure 4.27 is in chapter 4 of IPBES invasive alien species assessment report (<a href="http://doi.org/10.5281/zenodo.7430731">https://doi.org/10.5281/zenodo.7430731</a>) </p&gt
    corecore