443 research outputs found
Dynamic forest trafficability prediction by fusion of open data, hydrologic forecasts and harvester-measured data
FOTETRAF project: www.luke.fi/projektit/fotetraf-sa-paatos-295337.
Posteri esillÀ Marcus Wallenberg-palkintoseremonian yhteydessÀ pidettÀvÀssÀ nuorten tutkijoiden seminaarissa 26-27.10.2017 Tukholmassa (http://www.mwp.org/yr/).201
Meta-analysis of epigenome-wide associations between DNA methylation at birth and childhood cognitive skills
Cognitive skills are a strong predictor of a wide range of later life outcomes. Genetic and epigenetic associations across the genome explain some of the variation in general cognitive abilities in the general population and it is plausible that epigenetic associations might arise from prenatal environmental exposures and/or genetic variation early in life. We investigated the association between cord blood DNA methylation at birth and cognitive skills assessed in children from eight pregnancy cohorts within the Pregnancy And Childhood Epigenetics (PACE) Consortium across overall (total N = 2196), verbal (total N = 2206) and non-verbal cognitive scores (total N = 3300). The associations at single CpG sites were weak for all of the cognitive domains investigated. One region near DUSP22 on chromosome 6 was associated with non-verbal cognition in a model adjusted for maternal IQ. We conclude that there is little evidence to support the idea that variation in cord blood DNA methylation at single CpG sites is associated with cognitive skills and further studies are needed to confirm the association at DUSP22.Peer reviewe
Association between DNA methylation and ADHD symptoms from birth to school age : a prospective meta-analysis
Attention-deficit and hyperactivity disorder (ADHD) is a common childhood disorder with a substantial genetic component. However, the extent to which epigenetic mechanisms play a role in the etiology of the disorder is unknown. We performed epigenome-wide association studies (EWAS) within the Pregnancy And Childhood Epigenetics (PACE) Consortium to identify DNA methylation sites associated with ADHD symptoms at two methylation assessment periods: birth and school age. We examined associations of both DNA methylation in cord blood with repeatedly assessed ADHD symptoms (age 4-15 years) in 2477 children from 5 cohorts and of DNA methylation at school age with concurrent ADHD symptoms (age 7-11 years) in 2374 children from 9 cohorts, with 3 cohorts participating at both timepoints. CpGs identified with nominal significance (p <0.05) in either of the EWAS were correlated between timepoints (rho = 0.30), suggesting overlap in associations; however, top signals were very different. At birth, we identified nine CpGs that predicted later ADHD symptoms (p <1 x 10(-7)), including ERC2 and CREB5. Peripheral blood DNA methylation at one of these CpGs (cg01271805 in the promoter region of ERC2, which regulates neurotransmitter release) was previously associated with brain methylation. Another (cg25520701) lies within the gene body of CREB5, which previously was associated with neurite outgrowth and an ADHD diagnosis. In contrast, at school age, no CpGs were associated with ADHD with p <1 x 10(-7). In conclusion, we found evidence in this study that DNA methylation at birth is associated with ADHD. Future studies are needed to confirm the utility of methylation variation as biomarker and its involvement in causal pathways.Peer reviewe
Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients
Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.Peer reviewe
Association between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis
Attention-deficit and hyperactivity disorder (ADHD) is a common childhood disorder with a substantial genetic component. However, the extent to which epigenetic mechanisms play a role in the etiology of the disorder is unknown. We performed epigenome-wide association studies (EWAS) within the Pregnancy And Childhood Epigenetics (PACE) Consortium to identify DNA methylation sites associated with ADHD symptoms at two methylation assessment periods: birth and school age. We examined associations of both DNA methylation in cord blood with repeatedly assessed ADHD symptoms (age 4-15 years) in 2477 children from 5 cohorts and of DNA methylation at school age with concurrent ADHD symptoms (age 7-11 years) in 2374 children from 9 cohorts, with 3 cohorts participating at both timepoints. CpGs identified with nominal significance (p < 0.05) in either of the EWAS were correlated between timepoints (rho = 0.30), suggesting overlap in associations; however, top signals were very different. At birth, we identified nine CpGs that predicted later ADHD symptoms (p < 1 x 10(-7)), including ERC2 and CREB5. Peripheral blood DNA methylation at one of these CpGs (cg01271805 in the promoter region of ERC2, which regulates neurotransmitter release) was previously associated with brain methylation. Another (cg25520701) lies within the gene body of CREB5, which previously was associated with neurite outgrowth and an ADHD diagnosis. In contrast, at school age, no CpGs were associated with ADHD with p < 1 x 10(-7). In conclusion, we found evidence in this study that DNA methylation at birth is associated with ADHD. Future studies are needed to confirm the utility of methylation variation as biomarker and its involvement in causal pathways
DNA methylation and body mass index from birth to adolescence : meta-analyses of epigenome-wide association studies
Background DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. Methods We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. Results DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P <1.06 x 10(-7), with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth P-enrichment = 1; childhood P-enrichment = 2.00 x 10(-4); adolescence P-enrichment = 2.10 x 10(-7)). Conclusions There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.Peer reviewe
Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning
Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.Peer reviewe
Heme oxygenase-1 repeat polymorphism in septic acute kidney injury
Acute kidney injury (AKI) is a syndrome that frequently affects the critically ill. Recently, an increased number of dinucleotide repeats in the HMOX1 gene were reported to associate with development of AKI in cardiac surgery. We aimed to test the replicability of this finding in a Finnish cohort of critically ill septic patients. This multicenter study was part of the national FINNAKI study. We genotyped 300 patients with severe AKI (KDIGO 2 or 3) and 353 controls without AKI (KDIGO 0) for the guanine-thymine (GTn) repeat in the promoter region of the HMOX1 gene. The allele calling was based on the number of repeats, the cut off being 27 repeats in the S-L (short to long) classification, and 27 and 34 repeats for the S-M-L2 (short to medium to very long) classification. The plasma concentrations of heme oxygenase-1 (HO-1) enzyme were measured on admission. The allele distribution in our patients was similar to that published previously, with peaks at 23 and 30 repeats. The S-allele increases AKI risk. An adjusted OR was 1.30 for each S-allele in an additive genetic model (95% CI 1.01-1.66; p = 0.041). Alleles with a repeat number greater than 34 were significantly associated with lower HO-1 concentration (p<0.001). In septic patients, we report an association between a short repeat in HMOX1 and AKI risk
DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies
Background DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. Methods We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. Results DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 x 10(-7), with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth P-enrichment = 1; childhood P-enrichment = 2.00 x 10(-4); adolescence P-enrichment = 2.10 x 10(-7)). Conclusions There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity
- âŠ