164 research outputs found
In vitro evaluation of caseinophosphopeptides from different genetic variants on bone mineralization
Casein phosphopeptides (CPPs) have been shown to enhance calcium solubility and to increase the calcification by in vitro analyses. The aim of our study was to investigate the effects of four selected casein peptides, which differ in the number of phosphorylated serines, on osteoblast mineralization in vitro. The chosen peptides, related to different casein genetic variants, were obtained by chemical synthesis and tested on murine osteoblast cell line (MC3T3-E1). Our results suggest that the distinct peptides in protein hydrolysates may differentially affect calcium deposition in the extracellular matrix and that the genetic variation within the considered peptides is involved in their differential effect
Applicazioni di tecniche di telerilevamento con sistema termovisivo all'infrarosso per l'individuazione di efflussi costieri e di aree di drenaggio di corpi franosi
The use of camera operating in the 8-12 ”m range of electromagnetic wave spectrum, prove to be satisfactory in various sectors of the engineering geology. The results of some surveyings carried out by means of fixed stations on the land have been presented. The interpretation of the thermography which have been obtained is related to the meaning which is likely to be ascribed to the temperature distribution on the surface of the investigated bodies. In fact, the system shows in the form of shades of gray or of false colour the thermal energy radiated and reflected by the observed bodies. Starting from the most traditional applications concerning the census of submarine springs, but still prerogative of the most sophisticated systems based on the use of airborne multi-spectral scanners, the easiest thermovision system, which is also likely to be used on platforms installed on small aircraft, may stretch the applications range of remote sensing techniques to various field of the engineering geology. Besides the low cost and readiness of the survey, the thermovision system, used from fixed stations, allows to obtain images in the scale of the desired detail.Examples which have been presented refer to the location of submarine springs flowing along a part of the coast near Polignano (Bari, Apulia region) and near Maratea (Potenza, Basilicata Region), the observation of a landslide near Brindisi di Montagna (Potenza, Basilicata region). In the discussion of data resulting from thermographies taken on the above said objectives one can even realize factors which may negatively affect the image interpretation such as, for instance, the disturbance caused by vegetation to the temperature distribution on the land surface
Ghrelin plays a minor role in the physiological control of cardiac function in the rat
We have previously reported that a 7-d pretreatment with hexarelin, a synthetic ligand of the GH secretagogue receptor (GHS-R), largely prevented damages induced by ischemia and reperfusion in isolated rat hearts. Our aim was to ascertain whether ghrelin, an endogenous ligand of the GHS-R, is physiologically endowed with cardioprotective activity. Hypophysectomized rats were treated in vivo for 7 d with either ghrelin (320 microg/kg) or hexarelin (80 microg/kg), and their hearts were subjected in vitro to the ischemia and reperfusion procedure. Ghrelin was far less effective than hexarelin in preventing increases in left ventricular end-diastolic pressure (15% and 60% protection for ghrelin and hexarelin, respectively), coronary perfusion pressure (10% and 45% reduction), and release of creatine kinase in the heart perfusate (15% and 55% reduction). In the second experiment, normal rats were passively immunized against ghrelin for 21 d before the ischemia and reperfusion procedure. In these isolated hearts, the ischemia-reperfusion damage was not significantly increased compared with control rats. After hypophysectomy, CD36 mRNA levels significantly increased, whereas those of atrial natriuretic factor significantly decreased. We conclude that: 1) ghrelin plays a minor role in the control of heart function; and 2) hexarelin effects are mediated in part by the GHS-R and largely by interactions with the CD36
International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature.
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature
Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat
This study aims to investigate whether orexigenic antipsychotic drugs may induce dyslipidemia and glucose disturbances in female rats through direct perturbation of metabolically active peripheral tissues, independent of prior weight gain. Methods In the current study, we examined whether a single intraperitoneal injection of clozapine or olanzapine induced metabolic disturbances in adult female outbred SpragueâDawley rats. Serum glucose and lipid parameters were measured during time-course experiments up to 48 h. Real-time quantitative PCR was used to measure specific transcriptional alterations in lipid and carbohydrate metabolism in adipose tissue depots or in the liver. Results Our results demonstrated that acute administration of clozapine or olanzapine induced a rapid, robust elevation of free fatty acids and glucose in serum, followed by hepatic accumulation of lipids evident after 12â24 h. These metabolic disturbances were associated with biphasic patterns of gluconeogenic and lipid-related gene expression in the liver and in white adipose tissue depots. Conclusion Our results support that clozapine and olanzapine are associated with primary effects on carbohydrate and lipid metabolism associated with transcriptional changes in metabolically active peripheral tissues prior to the development of drug-induced weight gain
Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects
<p>Abstract</p> <p>Background</p> <p>Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood.</p> <p>Methods</p> <p>We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone.</p> <p>Results</p> <p>Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients.</p> <p>Conclusion</p> <p>Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles.</p
The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors.
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
THE CONCISE GUIDE TO PHARMACOLOGY 2019/20 : G protein- coupled receptors
The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.Peer reviewe
Finding New Genes for Non-Syndromic Hearing Loss through an In Silico Prioritization Study
At present, 51 genes are already known to be responsible for Non-Syndromic hereditary Hearing Loss (NSHL), but the knowledge of 121 NSHL-linked chromosomal regions brings to the hypothesis that a number of disease genes have still to be uncovered. To help scientists to find new NSHL genes, we built a gene-scoring system, integrating Gene Ontology, NCBI Gene and Map Viewer databases, which prioritizes the candidate genes according to their probability to cause NSHL. We defined a set of candidates and measured their functional similarity with respect to the disease gene set, computing a score () that relies on the assumption that functionally related genes might contribute to the same (disease) phenotype. A Kolmogorov-Smirnov test, comparing the pair-wise distribution on the disease gene set with the distribution on the remaining human genes, provided a statistical assessment of this assumption. We found at a p-value that the former pair-wise is greater than the latter, justifying a prioritization strategy based on the functional similarity of candidate genes respect to the disease gene set. A cross-validation test measured to what extent the ranking for NSHL is different from a random ordering: adding 15% of the disease genes to the candidate gene set, the ranking of the disease genes in the first eight positions resulted statistically different from a hypergeometric distribution with a p-value and a power. The twenty top-scored genes were finally examined to evaluate their possible involvement in NSHL. We found that half of them are known to be expressed in human inner ear or cochlea and are mainly involved in remodeling and organization of actin formation and maintenance of the cilia and the endocochlear potential. These findings strongly indicate that our metric was able to suggest excellent NSHL candidates to be screened in patients and controls for causative mutations
- âŠ