555 research outputs found

    On the spectroscopy of quantum dots in microcavities

    Full text link
    At the occasion of the OECS conference in Madrid, we give a succinct account of some recent predictions in the spectroscopy of a quantum dot in a microcavity that remain to be observed experimentally, sometimes within the reach of the current state of the art.Comment: OECS11 Conference proceedings, in editor style. 4 pages, 1 figure. Animations provided separatel

    Optimization of photon correlations by frequency filtering

    Full text link
    Photon correlations are a cornerstone of Quantum Optics. Recent works [NJP 15 025019, 033036 (2013), PRA 90 052111 (2014)] have shown that by keeping track of the frequency of the photons, rich landscapes of correlations are revealed. Stronger correlations are usually found where the system emission is weak. Here, we characterize both the strength and signal of such correlations, through the introduction of the 'frequency resolved Mandel parameter'. We study a plethora of nonlinear quantum systems, showing how one can substantially optimize correlations by combining parameters such as pumping, filtering windows and time delay.Comment: Small updates to take into account the recent experimental observation of the physics here analyze

    Linear and nonlinear coupling of quantum dots in microcavities

    Full text link
    We discuss the topical and fundamental problem of strong-coupling between a quantum dot an the single mode of a microcavity. We report seminal quantitative descriptions of experimental data, both in the linear and in the nonlinear regimes, based on a theoretical model that includes pumping and quantum statistics.Comment: Proceedings of the symposium Nanostructures: Physics and Technology 2010 (http://www.ioffe.ru/NANO2010), 2 pages in proceedings styl

    Deterministic generation of arbitrary photonic states assisted by dissipation

    Get PDF
    A scheme to utilize atom-like emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFS) for the atomic emitters with coherent evolution within the DFS enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.Comment: 15 pages, 4 figure

    Two-photon spectra of quantum emitters

    Get PDF
    We apply our recently developed theory of frequency-filtered and time-resolved N-photon correlations to study the two-photon spectra of a variety of systems of increasing complexity: single mode emitters with two limiting statistics (one harmonic oscillator or a two-level system) and the various combinations that arise from their coupling. We consider both the linear and nonlinear regimes under incoherent excitation. We find that even the simplest systems display a rich dynamics of emission, not accessible by simple single photon spectroscopy. In the strong coupling regime, novel two-photon emission processes involving virtual states are revealed. Furthermore, two general results are unraveled by two-photon correlations with narrow linewidth detectors: i) filtering induced bunching and ii) breakdown of the semi-classical theory. We show how to overcome this shortcoming in a fully-quantized picture.Comment: 27 pages, 8 figure

    HoloTrap: Interactive hologram design for multiple dynamic optical trapping

    Get PDF
    This work presents an application that generates real-time holograms to be displayed on a holographic optical tweezers setup; a technique that allows the manipulation of particles in the range from micrometres to nanometres. The software is written in Java, and uses random binary masks to generate the holograms. It allows customization of several parameters that are dependent on the experimental setup, such as the specific characteristics of the device displaying the hologram, or the presence of aberrations. We evaluate the software's performance and conclude that real-time interaction is achieved. We give our experimental results from manipulating 5 micron-diametre microspheres using the program.Comment: 17 pages, 6 figure

    Efectos de la diversificación ganadera de las explotaciones agrícolas en la adopción de innovaciones

    Get PDF
    publishedTomo I . Sección: Sistemas Ganaderos-Economía y Gestión. Sesión: Sostenibilidad. Ponencia nº 3

    Entanglement of two qubits mediated by one-dimensional plasmonic waveguides

    Get PDF
    We investigate qubit-qubit entanglement mediated by plasmons supported by one-dimensional waveguides. We explore both the situation of spontaneous formation of entanglement from an unentangled state and the emergence of driven steady-state entanglement under continuous pumping. In both cases, we show that large values for the concurrence are attainable for qubit-qubit distances larger than the operating wavelength by using plasmonic waveguides that are currently available.Comment: 4 pages, 4 figures. Minor Changes. Journal Reference added. Highlighted in Physic

    Emitters of NN-photon bundles

    Get PDF
    We propose a scheme based on the coherent excitation of a two-level system in a cavity to generate an ultrabright CW and focused source of quantum light that comes in groups (bundles) of NN photons, for an integer NN tunable with the frequency of the exciting laser. We define a new quantity, the \emph{purity} of NN-photon emission, to describe the percentage of photons emitted in bundles, thus bypassing the limitations of Glauber correlation functions. We focus on the case 1N31\le N\le3 and show that close to 100% of two-photon emission and 90% of three-photon emission is within reach of state of the art cavity QED samples. The statistics of the bundles emission shows that various regimes---from NN-photon lasing to NN-photon guns---can be realized. This is evidenced through generalized correlation functions that extend the standard definitions to the multi-photon level.Comment: Introduce the n-th order N-photon correlation functions. Reorganized to emphasize the N-photon emitter, now extended to the antibunching regime, rather than only coherent emission as previsoul
    corecore