40 research outputs found

    Simulated interventions to ameliorate age-related bone loss indicate the importance of timing

    Get PDF
    Bone remodeling is the continuous process of bone resorption by osteoclasts and bone formation by osteoblasts, in order to maintain homeostasis. The activity of osteoclasts and osteoblasts is regulated by a network of signaling pathways, including Wnt, parathyroid hormone (PTH), RANKL/OPG and TGF-β, in response to stimuli such as mechanical loading. During aging there is a gradual loss of bone mass due to dysregulation of signaling pathways. This may be due to a decline in physical activity with age and/or changes in hormones and other signaling molecules. In particular, hormones such as PTH have a circadian rhythm which may be disrupted in aging. Due to the complexity of the molecular and cellular networks involved in bone remodeling, several mathematical models have been proposed to aid understanding of the processes involved. However, to date there are no models which explicitly consider the effects of mechanical loading, the circadian rhythm of PTH and the dynamics of signaling molecules on bone remodeling. Therefore, we have constructed a network model of the system using a modular approach which will allow further modifications as required in future research. The model was used to simulate the effects of mechanical loading and also the effects of different interventions such as continuous or intermittent administration of PTH. Our model predicts that the absence of regular mechanical loading and/or an impaired PTH circadian rhythm leads to a gradual decrease in bone mass over time which can be restored by simulated interventions and that the effectiveness of some interventions may depend on their timing

    Clinical and Genetic Advances in Paget’s Disease of Bone: a Review

    Get PDF

    Dominant negative MCP-1 blocks human osteoclast differentiation

    No full text
    Human osteoclasts were differentiated using receptor activator of NFκB ligand (RANKL) and macrophage colony stimulating factor (M-CSF) from colony forming unit-granulocyte macrophage (CFU-GM) precursors of the myeloid lineage grown from umbilical cord blood. Gene expression profiling using quantitative polymerase chain reaction (Q-PCR) showed more than 1,000-fold induction of chemokine MCP-1 within 24 h of RANKL treatment. MCP-1 mRNA content exceeds that of other assayed chemokines (CCL1, 3, 4, and 5) at all time points up to day 14 of treatment. MCP-1 induction preceded peak induction of calcium signaling activator calmodulin 1 (CALM1) and transcription factors JUN and FOS, which were at 3 days. Key osteoclast related transcription factors NFATc1 and NFATc2 showed peak induction at 7 days, while marker genes for osteoclast function cathepsin K and tartrate resistance acid phosphatase (TRAP) were maximally induced at 14 days, corresponding with mature osteoclast function. To test whether the early and substantial peak in MCP-1 expression is part of human osteoclast differentiation events, a dominant negative inhibitor of MCP-1 (7ND) was added simultaneously with RANKL and M-CSF, resulting in blockade of CALM1, JUN and NFATc2 induction and strong inhibition of human osteoclast differentiation. These data show that a cascade of gene expression leading to osteoclast differentiation depends on intact early MCP-1 induction and signaling in human osteoclasts
    corecore