7 research outputs found

    DNA shuttling between plasmid vectors and a genome vector: systematic conversion and preservation of DNA libraries using the Bacillus subtilis genome (BGM

    No full text
    The combined use of the contemporary vector systems, the bacterial artificial chromosome (BAC) vector and the Bacillus subtilis genome (BGM) vector, makes possible the handling of giant-length DNA (above 100 kb). Our newly constructed BGM vector efficiently integrated DNA prepared in the BAC vector. A BAC library comprised of 18 independent clones prepared from mitochondrial DNA (mtDNA) of Arabidopsis thaliana was converted to a parallel BGM library using the new BGM vector. The effectiveness of the combined use of the vector systems was confirmed by the stable recovery of all 18 DNAs as BAC clones from the respective BGM clones. We show that DNA in BGM was stably preserved at room temperature after spore formation of the host B. subtilis. Rapid and stable shuttling between Escherichia coli and the B. subtilis host, combined with spore-mediated DNA storage, may facilitate the long-term and low-cost preservation and the transportation of DNA resources

    Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector

    No full text
    A novel genome vector using the 4215 kb Bacillus subtilis genome provides for precise target cloning and processing of the cloned DNA to the desired structure. Each process highly dependent on homologous recombination in the host B.subtilis is distinguished from the other cloning systems. A 120 kb mouse jumonji (jmj) genomic gene was processed in the genome vector to give a series of truncated sub-megasized DNA. One of these truncated segments containing the first intron was copied in a plasmid by a recombinational transfer method developed for B.subtilis. DNA manipulation previously considered difficult is argued with respect to DNA size and accuracy

    Enzyme-labeled Antigen Method: Histochemical Detection of Antigen-specific Antibody-producing Cells in Tissue Sections of Rats Immunized With Horseradish Peroxidase, Ovalbumin, or Keyhole Limpet Hemocyanin

    No full text
    The enzyme-labeled antigen method is a histochemical technique that visualizes antigen-specific antibody-producing cells in tissue sections, originally documented in 1968. In this study, we attempted to reemerge this hidden but potentially useful method in rat models immunized with horseradish peroxidase (HRP), ovalbumin (OA), or keyhole limpet hemocyanin (KLH). After repeated immunization in footpads, popliteal, groin, and axillary lymph nodes and spleen were sampled. Paraformaldehyde-prefixed frozen sections were incubated with HRP, biotinylated OA, or biotinylated KLH. Proteinase K pretreatment and the secondary use of HPR-labeled streptavidin were applied in the latter two situations. Plasma cells producing antigen-specific antibodies were visualized. Proportions of antigen-specific antibody-producing cells in total plasma cells shown with the immunoperoxidase method for rat immunoglobulins were evaluated. The percentage of antigen-specific plasma cells reached ∼50% of total plasma cells in the regional lymph nodes. The specificity was confirmed by (a) negativity in non-immune rat tissue, (b) negativity with indifferent antigen probes, and (c) abolishment of the reactivity with the corresponding rat serum. In buffered formalin-fixed, paraffin-embedded tissues, fewer plasma cells were labeled for HRP and KLH antibody reactivity after strong proteolysis and prolonged incubation. Expectedly, this method allows us to observe antigen-specific antibody-producing cells under varied pathological conditions. (J Histochem Cytochem 57:101–111, 2009

    Specific In Situ Visualization of Plasma Cells Producing Antibodies against Porphyromonas gingivalis in Gingival Radicular Cyst: Application of the Enzyme-Labeled Antigen Method

    No full text
    The enzyme-labeled antigen method was applied to visualize plasma cells producing antibodies to Porphyromonas gingivalis, flora of the human oral cavity. Antibodies to P. gingivalis have reportedly been detected in sera of patients with periodontitis. Biotinylated bacterial antigens, Ag53, and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro, and Lys-hgp) were prepared by the cell-free protein synthesis system using the wheat germ extract. In paraformaldehyde-fixed frozen sections of rat lymph nodes experimentally immunized with Ag53-positive and Ag53-negative P. gingivalis, plasma cells were labeled with biotinylated Arg-hgp and Lys-hgp. Antibodies to Ag53 were detected only in the nodes immunized with Ag53-positive bacteria. In two of eight lesions of gingival radicular cyst with inflammatory infiltration, CD138-positive plasma cells in frozen sections were signalized for Arg-hgp and Lys-hgp. An absorption study using unlabeled antigens confirmed the specificity of staining. The AlphaScreen method identified the same-type antibodies in tissue extracts but not in sera. Antibodies to Ag53, Arg-pro, and Lys-pro were undetectable. In two cases, serum antibodies to Arg-hgp and Lys-hgp were AlphaScreen positive, whereas plasma cells were scarcely observed within the lesions. These findings indicate the validity of the enzyme-labeled antigen method. This is the very first application of this novel histochemical technique to human clinical samples

    Mobile phone network data reveal nationwide economic value of coastal tourism under climate change

    No full text
    The technology-driven application of big data is expected to assist policymaking towards sustainable development; however, the relevant literature has not addressed human welfare under climate change, which limits the understanding of climate change impacts on human societies. We present the first application of unique mobile phone network data to evaluate the current nation-wide human welfare of coastal tourism at Japanese beaches and project the value change using the four climate change scenarios. The results show that the projected national economic value loss rates are more significant than the projected national physical beach loss rates. Our findings demonstrate regional differences in recreational values: most southern beaches with larger current values would disappear, while the current small values of the northern beaches would remain. These changes imply that the ranks of the beaches, based on economic values, would enable policymakers to discuss management priorities under climate change
    corecore