128 research outputs found

    Reliability and effectiveness of clickthrough data for automatic image annotation

    Get PDF
    Automatic image annotation using supervised learning is performed by concept classifiers trained on labelled example images. This work proposes the use of clickthrough data collected from search logs as a source for the automatic generation of concept training data, thus avoiding the expensive manual annotation effort. We investigate and evaluate this approach using a collection of 97,628 photographic images. The results indicate that the contribution of search log based training data is positive despite their inherent noise; in particular, the combination of manual and automatically generated training data outperforms the use of manual data alone. It is therefore possible to use clickthrough data to perform large-scale image annotation with little manual annotation effort or, depending on performance, using only the automatically generated training data. An extensive presentation of the experimental results and the accompanying data can be accessed at http://olympus.ee.auth.gr/~diou/civr2009/

    ImageCLEF 2013: The vision, the data and the open challenges

    Full text link
    This paper presents an overview of the ImageCLEF 2013 lab. Since its first edition in 2003, ImageCLEF has become one of the key initiatives promoting the benchmark evaluation of algorithms for the cross-language annotation and retrieval of images in various domains, such as public and personal images, to data acquired by mobile robot platforms and botanic collections. Over the years, by providing new data collections and challenging tasks to the community of interest, the ImageCLEF lab has achieved an unique position in the multi lingual image annotation and retrieval research landscape. The 2013 edition consisted of three tasks: the photo annotation and retrieval task, the plant identification task and the robot vision task. Furthermore, the medical annotation task, that traditionally has been under the ImageCLEF umbrella and that this year celebrates its tenth anniversary, has been organized in conjunction with AMIA for the first time. The paper describes the tasks and the 2013 competition, giving an unifying perspective of the present activities of the lab while discussion the future challenges and opportunities.This work has been partially supported by the Halser Foundation (B. C.),by the LiMoSINe FP7 project under grant # 288024 (B. T.), by the Khresmoi (grant# 257528) and PROMISE ( grant # 258191) FP 7 projects (H.M.) and by the tranScriptorium FP7 project under grant # 600707 (M. V., R. P.)Caputo ., B.; Muller ., H.; Thomee ., B.; Villegas, M.; Paredes Palacios, R.; Zellhofer ., D.; Goeau ., H.... (2013). ImageCLEF 2013: The vision, the data and the open challenges. En Information Access Evaluation. Multilinguality, Multimodality, and Visualization. Springer Verlag (Germany). 8138:250-268. https://doi.org/10.1007/978-3-642-40802-1_26S2502688138Muller, H., Clough, P., Deselaers, T., Caputo, B.: ImageCLEF: experimental evaluation in visual information retrieval. Springer (2010)Tsikrika, T., Seco de Herrera, A.G., MĂŒller, H.: Assessing the scholarly impact of imageCLEF. In: Forner, P., Gonzalo, J., KekĂ€lĂ€inen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 95–106. Springer, Heidelberg (2011)Huiskes, M., Lew, M.: The MIR Flickr retrieval evaluation. In: Proceedings of the 10th ACM Conference on Multimedia Information Retrieval, Vancouver, BC, Canada, pp. 39–43 (2008)Huiskes, M., Thomee, B., Lew, M.: New trends and ideas in visual concept detection. In: Proceedings of the 11th ACM Conference on Multimedia Information Retrieval, Philadelphia, PA, USA, pp. 527–536 (2010)Villegas, M., Paredes, R.: Overview of the ImageCLEF 2012 Scalable Web Image Annotation Task. In: CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy (2012)Zellhöfer, D.: Overview of the Personal Photo Retrieval Pilot Task at ImageCLEF 2012. In: CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy (2012)Villegas, M., Paredes, R., Thomee, B.: Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain (2013)Zellhöfer, D.: Overview of the ImageCLEF 2013 Personal Photo Retrieval Subtask. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain (2013)Leafsnap (2011)Plantnet (2013)Mobile flora (2013)Folia (2012)GoĂ«au, H., Bonnet, P., Joly, A., Bakic, V., Boujemaa, N., Barthelemy, D., Molino, J.F.: The imageclef 2013 plant identification task. In: ImageCLEF 2013 Working Notes (2013)Pronobis, A., Xing, L., Caputo, B.: Overview of the CLEF 2009 robot vision track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., MĂŒller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 110–119. Springer, Heidelberg (2010)Pronobis, A., Caputo, B.: The robot vision task. In: Muller, H., Clough, P., Deselaers, T., Caputo, B. (eds.) ImageCLEF. The Information Retrieval Series, vol. 32, pp. 185–198. Springer, Heidelberg (2010)Pronobis, A., Christensen, H.I., Caputo, B.: Overview of the imageCLEF@ICPR 2010 robot vision track. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 171–179. Springer, Heidelberg (2010)Martinez-Gomez, J., Garcia-Varea, I., Caputo, B.: Overview of the imageclef 2012 robot vision task. In: CLEF 2012 Working Notes (2012)Rusu, R., Cousins, S.: 3d is here: Point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: International Conference on Computer Vision, pp. 1–8. Citeseer (2007)Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Linde, O., Lindeberg, T.: Object recognition using composed receptive field histograms of higher dimensionality. In: Proc. ICPR. Citeseer (2004)Orabona, F., Castellini, C., Caputo, B., Luo, J., Sandini, G.: Indoor place recognition using online independent support vector machines. In: Proc. BMVC, vol. 7 (2007)Orabona, F., Castellini, C., Caputo, B., Jie, L., Sandini, G.: On-line independent support vector machines. Pattern Recognition 43, 1402–1412 (2010)Orabona, F., Jie, L., Caputo, B.: Online-Batch Strongly Convex Multi Kernel Learning. In: Proc. of Computer Vision and Pattern Recognition, CVPR (2010)Orabona, F., Jie, L., Caputo, B.: Multi kernel learning with online-batch optimization. Journal of Machine Learning Research 13, 165–191 (2012)Clough, P., MĂŒller, H., Sanderson, M.: The CLEF 2004 cross-language image retrieval track. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 597–613. Springer, Heidelberg (2005)Clough, P., MĂŒller, H., Deselaers, T., Grubinger, M., Lehmann, T.M., Jensen, J., Hersh, W.: The CLEF 2005 cross–language image retrieval track. In: Peters, C., Gey, F.C., Gonzalo, J., MĂŒller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)MĂŒller, H., Deselaers, T., Deserno, T., Clough, P., Kim, E., Hersh, W.: Overview of the imageCLEFmed 2006 medical retrieval and medical annotation tasks. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 595–608. Springer, Heidelberg (2007)MĂŒller, H., Deselaers, T., Deserno, T., Kalpathy–Cramer, J., Kim, E., Hersh, W.: Overview of the imageCLEFmed 2007 medical retrieval and medical annotation tasks. In: Peters, C., Jijkoun, V., Mandl, T., MĂŒller, H., Oard, D.W., Peñas, A., Petras, V., Santos, D. (eds.) CLEF 2007. LNCS, vol. 5152, pp. 472–491. Springer, Heidelberg (2008)MĂŒller, H., Kalpathy–Cramer, J., Eggel, I., Bedrick, S., Radhouani, S., Bakke, B., Kahn Jr., C.E., Hersh, W.: Overview of the CLEF 2009 medical image retrieval track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., MĂŒller, H., Tsikrika, T. (eds.) CLEF 2009, Part II. LNCS, vol. 6242, pp. 72–84. Springer, Heidelberg (2010)Tommasi, T., Caputo, B., Welter, P., GĂŒld, M.O., Deserno, T.M.: Overview of the CLEF 2009 medical image annotation track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., MĂŒller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 85–93. Springer, Heidelberg (2010)MĂŒller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF – Experimental Evaluation in Visual Information Retrieval. The Springer International Series on Information Retrieval, vol. 32. Springer, Heidelberg (2010)Kalpathy-Cramer, J., MĂŒller, H., Bedrick, S., Eggel, I., GarcĂ­a Seco de Herrera, A., Tsikrika, T.: The CLEF 2011 medical image retrieval and classification tasks. In: Working Notes of CLEF 2011 (Cross Language Evaluation Forum) (2011)MĂŒller, H., GarcĂ­a Seco de Herrera, A., Kalpathy-Cramer, J., Demner Fushman, D., Antani, S., Eggel, I.: Overview of the ImageCLEF 2012 medical image retrieval and classification tasks. In: Working Notes of CLEF 2012 (Cross Language Evaluation Forum) (2012)GarcĂ­a Seco de Herrera, A., Kalpathy-Cramer, J., Demner Fushman, D., Antani, S., MĂŒller, H.: Overview of the ImageCLEF 2013 medical tasks. In: Working Notes of CLEF 2013 (Cross Language Evaluation Forum) (2013

    VITALAS at TRECVID-2009

    Get PDF
    This paper describes the participation of VITALAS in the TRECVID-2009 evaluation where we submitted runs for the High-Level Feature Extraction (HLFE) and Interactive Search tasks. For the HLFE task, we focus on the evaluation of low-level feature sets and fusion methods. The runs employ multiple low-level features based on all available modalities (visual, audio and text) and the results show that use of such features improves the retrieval eectiveness signicantly. We also use a concept score fusion approach that achieves good results with reduced low-level feature vector dimensionality. Furthermore, a weighting scheme is introduced for cluster assignment in the \bag-of-words" approach. Our runs achieved good performance compared to a baseline run and the submissions of other TRECVID-2009 participants. For the Interactive Search task, we focus on the evaluation of the integrated VITALAS system in order to gain insights into the use and eectiveness of the system's search functionalities on (the combination of) multiple modalities and study the behavior of two user groups: professional archivists and non-professional users. Our analysis indicates that both user groups submit about the same total number of queries and use the search functionalities in a similar way, but professional users save twice as many shots and examine shots deeper in the ranked retrieved list.The agreement between the TRECVID assessors and our users was quite low. In terms of the eectiveness of the dierent search modalities, similarity searches retrieve on average twice as many relevant shots as keyword searches, fused searches three times as many, while concept searches retrieve even up to ve times as many relevant shots, indicating the benets of the use of robust concept detectors in multimodal video retrieval. High-Level Feature Extraction Runs 1. A VITALAS.CERTH-ITI 1: Early fusion of all available low-level features. 2. A VITALAS.CERTH-ITI 2: Concept score fusion for ve low-level features and 100 concepts, text features and bag-of-words with color SIFT descriptor based on dense sampling. 3. A VITALAS.CERTH-ITI 3: Concept score fusion for ve low-level features and 100 concepts combined with text features. 4. A VITALAS.CERTH-ITI 4: Weighting scheme for bag-of-words based on dense sampling of the color SIFT descriptor. 5. A VITALAS.CERTH-ITI 5: Baseline run, bag-of-words based on dense sampling of the color SIFT descriptor. Interactive Search Runs 1. vitalas 1: Interactive run by professional archivists 2. vitalas 2: Interactive run by professional archivists 3. vitalas 3: Interactive run by non-professional users 4. vitalas 4: Interactive run by non-professional user

    ImageCLEF 2014: Overview and analysis of the results

    Full text link
    This paper presents an overview of the ImageCLEF 2014 evaluation lab. Since its first edition in 2003, ImageCLEF has become one of the key initiatives promoting the benchmark evaluation of algorithms for the annotation and retrieval of images in various domains, such as public and personal images, to data acquired by mobile robot platforms and medical archives. Over the years, by providing new data collections and challenging tasks to the community of interest, the ImageCLEF lab has achieved an unique position in the image annotation and retrieval research landscape. The 2014 edition consists of four tasks: domain adaptation, scalable concept image annotation, liver CT image annotation and robot vision. This paper describes the tasks and the 2014 competition, giving a unifying perspective of the present activities of the lab while discussing future challenges and opportunities.This work has been partially supported by the tranScriptorium FP7 project under grant #600707 (M. V., R. P.).Caputo, B.; MĂŒller, H.; Martinez-Gomez, J.; Villegas SantamarĂ­a, M.; Acar, B.; Patricia, N.; Marvasti, N.... (2014). ImageCLEF 2014: Overview and analysis of the results. En Information Access Evaluation. Multilinguality, Multimodality, and Interaction: 5th International Conference of the CLEF Initiative, CLEF 2014, Sheffield, UK, September 15-18, 2014. Proceedings. Springer Verlag (Germany). 192-211. https://doi.org/10.1007/978-3-319-11382-1_18S192211Bosch, A., Zisserman, A.: Image classification using random forests and ferns. In: Proc. CVPR (2007)Caputo, B., MĂŒller, H., Martinez-Gomez, J., Villegas, M., Acar, B., Patricia, N., Marvasti, N., ÜskĂŒdarlı, S., Paredes, R., Cazorla, M., Garcia-Varea, I., Morell, V.: ImageCLEF 2014: Overview and analysis of the results. In: Kanoulas, E., et al. (eds.) CLEF 2014. LNCS, vol. 8685, Springer, Heidelberg (2014)Caputo, B., Patricia, N.: Overview of the ImageCLEF 2014 Domain Adaptation Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes (2014)de Carvalho Gomes, R., Correia Ribas, L., Antnio de Castro Jr., A., Nunes Gonalves, W.: CPPP/UFMS at ImageCLEF 2014: Robot Vision Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes (2014)Del Frate, F., Pacifici, F., Schiavon, G., Solimini, C.: Use of neural networks for automatic classification from high-resolution images. IEEE Transactions on Geoscience and Remote Sensing 45(4), 800–809 (2007)Feng, S.L., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and video annotation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II–1002. IEEE (2004)Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment 61(3), 399–409 (1997)Goh, K.-S., Chang, E.Y., Li, B.: Using one-class and two-class svms for multiclass image annotation. IEEE Transactions on Knowledge and Data Engineering 17(10), 1333–1346 (2005)Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: Proc. CVPR. Extended Version Considering its Additional MaterialJie, L., Tommasi, T., Caputo, B.: Multiclass transfer learning from unconstrained priors. In: Proc. ICCV (2011)Kim, S., Park, S., Kim, M.: Image classification into object / non-object classes. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 393–400. Springer, Heidelberg (2004)Ko, B.C., Lee, J., Nam, J.Y.: Automatic medical image annotation and keyword-based image retrieval using relevance feedback. Journal of Digital Imaging 25(4), 454–465 (2012)Kökciyan, N., TĂŒrkay, R., ÜskĂŒdarlı, S., Yolum, P., Bakır, B., Acar, B.: Semantic Description of Liver CT Images: An Ontological Approach. IEEE Journal of Biomedical and Health Informatics (2014)Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.  2, pp. 2169–2178. IEEE (2006)Martinez-Gomez, J., Garcia-Varea, I., Caputo, B.: Overview of the imageclef 2012 robot vision task. In: CLEF (Online Working Notes/Labs/Workshop) (2012)Martinez-Gomez, J., Garcia-Varea, I., Cazorla, M., Caputo, B.: Overview of the imageclef 2013 robot vision task. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes (2013)Martinez-Gomez, J., Cazorla, M., Garcia-Varea, I., Morell, V.: Overview of the ImageCLEF 2014 Robot Vision Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes (2014)Mueen, A., Zainuddin, R., Baba, M.S.: Automatic multilevel medical image annotation and retrieval. Journal of Digital Imaging 21(3), 290–295 (2008)Muller, H., Clough, P., Deselaers, T., Caputo, B.: ImageCLEF: experimental evaluation in visual information retrieval. Springer (2010)Park, S.B., Lee, J.W., Kim, S.K.: Content-based image classification using a neural network. Pattern Recognition Letters 25(3), 287–300 (2004)Patricia, N., Caputo, B.: Learning to learn, from transfer learning to domain adaptation: a unifying perspective. In: Proc. CVPR (2014)Pronobis, A., Caputo, B.: The robot vision task. In: Muller, H., Clough, P., Deselaers, T., Caputo, B. (eds.) ImageCLEF. The Information Retrieval Series, vol. 32, pp. 185–198. Springer, Heidelberg (2010)Pronobis, A., Christensen, H., Caputo, B.: Overview of the imageclef@ icpr 2010 robot vision track. In: Recognizing Patterns in Signals, Speech, Images and Videos, pp. 171–179 (2010)Qi, X., Han, Y.: Incorporating multiple svms for automatic image annotation. Pattern Recognition 40(2), 728–741 (2007)Reshma, I.A., Ullah, M.Z., Aono, M.: KDEVIR at ImageCLEF 2014 Scalable Concept Image Annotation Task: Ontology based Automatic Image Annotation. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes. Sheffield, UK, September 15-18 (2014)Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010)Sahbi, H.: CNRS - TELECOM ParisTech at ImageCLEF 2013 Scalable Concept Image Annotation Task: Winning Annotations with Context Dependent SVMs. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain, September 23-26 (2013)Sethi, I.K., Coman, I.L., Stan, D.: Mining association rules between low-level image features and high-level concepts. In: Aerospace/Defense Sensing, Simulation, and Controls, pp. 279–290. International Society for Optics and Photonics (2001)Shi, R., Feng, H., Chua, T.-S., Lee, C.-H.: An adaptive image content representation and segmentation approach to automatic image annotation. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 545–554. Springer, Heidelberg (2004)Tommasi, T., Caputo, B.: Frustratingly easy nbnn domain adaptation. In: Proc. ICCV (2013)Tommasi, T., Quadrianto, N., Caputo, B., Lampert, C.H.: Beyond dataset bias: Multi-task unaligned shared knowledge transfer. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 1–15. Springer, Heidelberg (2013)Tsikrika, T., de Herrera, A.G.S., MĂŒller, H.: Assessing the scholarly impact of imageCLEF. In: Forner, P., Gonzalo, J., KekĂ€lĂ€inen, J., Lalmas, M., de Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 95–106. Springer, Heidelberg (2011)Ünay, D., Soldea, O., AkyĂŒz, S., Çetin, M., Erçil, A.: Medical image retrieval and automatic annotation: Vpa-sabanci at imageclef 2009. In: The Cross-Language Evaluation Forum (CLEF) (2009)Vailaya, A., Figueiredo, M.A., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Transactions on Image Processing 10(1), 117–130 (2001)Villegas, M., Paredes, R.: Overview of the ImageCLEF 2012 Scalable Web Image Annotation Task. In: Forner, P., Karlgren, J., Womser-Hacker, C. (eds.) CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy, September 17-20 (2012), http://mvillegas.info/pub/Villegas12_CLEF_Annotation-Overview.pdfVillegas, M., Paredes, R.: Overview of the ImageCLEF 2014 Scalable Concept Image Annotation Task. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes, Sheffield, UK, September 15-18 (2014), http://mvillegas.info/pub/Villegas14_CLEF_Annotation-Overview.pdfVillegas, M., Paredes, R., Thomee, B.: Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain, September 23-26 (2013), http://mvillegas.info/pub/Villegas13_CLEF_Annotation-Overview.pdfVillena RomĂĄn, J., GonzĂĄlez CristĂłbal, J.C., Goñi Menoyo, J.M., MartĂ­nez FernĂĄndez, J.L.: MIRACLE’s naive approach to medical images annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(7), 1088–1099 (2005)Wong, R.C., Leung, C.H.: Automatic semantic annotation of real-world web images. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 1933–1944 (2008)Yang, C., Dong, M., Fotouhi, F.: Image content annotation using bayesian framework and complement components analysis. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 1, pp. I–1193. IEEE (2005)Yılmaz, K.Y., Cemgil, A.T., Simsekli, U.: Generalised coupled tensor factorisation. In: Advances in Neural Information Processing Systems, pp. 2151–2159 (2011)Zhang, Y., Qin, J., Chen, F., Hu, D.: NUDTs Participation in ImageCLEF Robot Vision Challenge 2014. In: CLEF 2014 Evaluation Labs and Workshop, Online Working Notes (2014

    Experiences from the ImageCLEF Medical Retrieval and Annotation Tasks

    Get PDF
    The medical tasks in ImageCLEF have been run every year from 2004-2018 and many different tasks and data sets have been used over these years. The created resources are being used by many researchers well beyond the actual evaluation campaigns and are allowing to compare the performance of many techniques on the same grounds and in a reproducible way. Many of the larger data sets are from the medical literature, as such images are easier to obtain and to share than clinical data, which was used in a few smaller ImageCLEF challenges that are specifically marked with the disease type and anatomic region. This chapter describes the main results of the various tasks over the years, including data, participants, types of tasks evaluated and also the lessons learned in organizing such tasks for the scientific community

    Bronchiectasis insanity:Doing the same thing over and over again and expecting different results?

    Get PDF
    Bronchiectasis is an increasingly common disease with a significant impact on quality of life and morbidity of affected patients. It is also a very heterogeneous disease with numerous different underlying etiologies and presentations. Most treatments for bronchiectasis are based on low-quality evidence; consequently, no treatments have been approved by the US Food and Drug Administration or the European Medicines Agency for the treatment of bronchiectasis. The last several years have seen numerous clinical trials in which the investigational agent, thought to hold great promise, did not demonstrate a clinically or statistically significant benefit. This commentary will review the likely reasons for these disappointing results and a potential approach that may have a greater likelihood of defining evidence-based treatment for bronchiectasis

    Ideal cardiovascular health and inflammation in European adolescents: The HELENA study

    Get PDF
    Background and aims Inflammation plays a key role in atherosclerosis and this process seems to appear in childhood. The ideal cardiovascular health index (ICHI) has been inversely related to atherosclerotic plaque in adults. However, evidence regarding inflammation and ICHI in adolescents is scarce. The aim is to assess the association between ICHI and inflammation in European adolescents. Methods and results As many as 543 adolescents (251 boys and 292 girls) from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study, a cross-sectional multi-center study including 9 European countries, were measured. C-reactive protein (CRP), complement factors C3 and C4, leptin and white blood cell counts were used to compute an inflammatory score. Multilevel linear models and multilevel logistic regression were used to assess the association between ICHI and inflammation controlling by covariates. Higher ICHI was associated with a lower inflammatory score, as well as with several individual components, both in boys and girls (p < 0.01). In addition, adolescents with at least 4 ideal components of the ICHI had significantly lower inflammatory score and lower levels of the study biomarkers, except CRP. Finally, the multilevel logistic regression showed that for every unit increase in the ICHI, the probability of having an inflammatory profile decreased by 28.1% in girls. Conclusion Results from this study suggest that a better ICHI is associated with a lower inflammatory profile already in adolescence. Improving these health behaviors, and health factors included in the ICHI, could play an important role in CVD prevention

    Evaluation of iron status in European adolescents through biochemical iron indicators: the HELENA Study

    Get PDF
    BACKGROUND/OBJECTIVES: To assess the iron status among European adolescents through selected biochemical parameters in a cross-sectional study performed in 10 European cities. SUBJECTS/METHODS: Iron status was defined utilising biochemical indicators. Iron depletion was defined as low serum ferritin (SF8.5 mg/l) plus iron depletion. Iron deficiency anaemia (IDA) was defined as ID with haemoglobin (Hb) below the WHO cutoff for age and sex: 12.0 g/dl for girls and for boys aged 12.5-14.99 years and 13.0 g/dl for boys aged ≄15 years. Enzyme linked immunosorbent assay was used as analytical method for SF, sTfR and C-reactive protein (CRP). Subjects with indication of inflammation (CRP >5 mg/l) were excluded from the analyses. A total of 940 adolescents aged 12.5-17.49 years (438 boys and 502 girls) were involved. RESULTS: The percentage of iron depletion was 17.6%, significantly higher in girls (21.0%) compared with boys (13.8%). The overall percentage of ID and IDA was 4.7 and 1.3%, respectively, with no significant differences between boys and girls. A correlation was observed between log (SF) and Hb (r = 0.36, P < 0.01), and between log (sTfR) and mean corpuscular haemoglobin (r = -0.30, P < 0.01). Iron body stores were estimated on the basis of log (sTfR/SF). A higher percentage of negative values of body iron was recorded in girls (16.5%) with respect to boys (8.3%), and body iron values tended to increase with age in boys, whereas the values remained stable in girls. CONCLUSIONS: To ensure adequate iron stores, specific attention should be given to girls at European level to ensure that their dietary intake of iron is adequate.status: publishe

    Relationship between self-reported dietary intake and physical activity levels among adolescents: The HELENA study

    Get PDF
    Background Evidence suggests possible synergetic effects of multiple lifestyle behaviors on health risks like obesity and other health outcomes. Therefore it is important to investigate associations between dietary and physical activity behavior, the two most important lifestyle behaviors influencing our energy balance and body composition. The objective of the present study is to describe the relationship between energy, nutrient and food intake and the physical activity level among a large group of European adolescents. Methods The study comprised a total of 2176 adolescents (46.2% male) from ten European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Dietary intake and physical activity were assessed using validated 24-h dietary recalls and self-reported questionnaires respectively. Analyses of covariance (ANCOVA) were used to compare the energy and nutrient intake and the food consumption between groups of adolescents with different physical activity levels (1st to 3rd tertile). Results In both sexes no differences were found in energy intake between the levels of physical activity. The most active males showed a higher intake of polysaccharides, protein, water and vitamin C and a lower intake of saccharides compared to less active males. Females with the highest physical activity level consumed more polysaccharides compared to their least active peers. Male and female adolescents with the highest physical activity levels, consumed more fruit and milk products and less cheese compared to the least active adolescents. The most active males showed higher intakes of vegetables and meat, fish, eggs, meat substitutes and vegetarian products compared to the least active ones. The least active males reported the highest consumption of grain products and potatoes. Within the female group, significantly lower intakes of bread and cereal products and spreads were found for those reporting to spend most time in moderate to vigorous physical activity. The consumption of foods from the remaining food groups, did not differ between the physical activity levels in both sexes. Conclusion It can be concluded that dietary habits diverge between adolescents with different self-reported physical activity levels. For some food groups a difference in intake could be found, which were reflected in differences in some nutrient intakes. It can also be concluded that physically active adolescents are not always inclined to eat healthier diets than their less active peers.The HELENA study took place with the financial support of the European Community Sixth RTD Framework Programme (Contract FOOD-CT: 2005-007034). This work was also partially supported by the European Union, in the framework of the Public Health Programme (ALPHA project, Ref: 2006120), the Swedish Council for Working Life and Social Research (FAS), the Spanish Ministry of Education (EX-2007-1124, and EX-2008-0641), and the Spanish Ministry of Health, Maternal, Child Health and Development Network (number RD08/0072) (JPRL, LAM)
    • 

    corecore