
VITALAS at TRECVID-2008

Christos Diou ∗† Christos Papachristou∗,† Panagiotis Panagiotopoulos∗,†

George Stephanopoulos† Nikos Dimitriou† Anastasios Delopoulos∗,†

Henning Rode‡ Robin Aly§ Arjen P. de Vries‡ Theodora Tsikrika‡

Abstract

High Level Feature Extraction runs.

1. A VITALAS.CERTH.ITI 1: Combination of
early fusion and concept score fusion with fea-
ture selection.

2. A VITALAS.CERTH.ITI 2: Concept score fu-
sion with feature selection.

3. A VITALAS.CERTH.ITI 3: Clustering
within feature space and concept score fusion
with feature selection.

4. A VITALAS.CERTH.ITI 4: Concept score fu-
sion for selected low level features.

5. a VITALAS.CERTH.ITI 5: Mandatory type
‘a’ run, concept score fusion for selected low
level features.

This is the first participation of VITALAS
in TRECVID. In the high level feature extraction
task, our submitted runs are based mainly on vi-
sual features, while one run utilizes audio informa-
tion as well; the text is not used. The experiments
performed aim at evaluating the effectiveness of dif-
ferent approaches to input processing prior to the
final classification (i.e., ranking) stage. These are
(i) clustering of feature vectors within the feature
space, (ii) fusion of classifier output scores for other
concepts and (iii) feature selection. The results in-
dicate that (i) fusion of the classifier output of other
concepts can provide valuable information, even if
the original features are not discriminative, (ii) fea-
ture selection generally improves the results (espe-
cially when the original number of dimensions is

∗Multimedia Understanding Group
Information Processing Laboratory
Electrical and Computer Engineering
Aristotle University of Thessaloniki, Greece

†Informatics and Telematics Institute
Centre for Research and Technology Hellas

‡Centrum voor Wiskunde en Informatica (CWI)
Amsterdam, The Netherlands

§Database Group, University of Twente

high) and (iii) clustering within the feature space
with small number of clusters does not seem to pro-
vide any significant additional information.

Search runs.

1. ASR ranks shots solely based on the ASR col-
lection,

2. TOP20 uses only the 20 highest scored con-
cepts for each shot,

3. SIGMA2 defines a deviation-based threshold
to determine which concepts will be consid-
ered,

4. DEVTOP20 combines the previous two meth-
ods TOP20 and SIGMA2,

5. DEVTOP50 works as DEVTOP20 but using
the top 50 concepts,

6. ASR-DEVTOP20 combines ASR and concept-
based ranking.

Our experiments for the search task are fo-
cused on concept retrieval. We generate an artifi-
cial text collection by merging context descriptions
according to the probability of each concept to oc-
cur in a given shot. To make the approach feasible,
we further need to investigate techniques for prun-
ing the dense shot concept matrix. Despite the
poor overall retrieval quality, our concept search
runs show a similar performance to the pure ASR
run. Only the combination of ASR and concept
search yields considerable improvements. Among
the tested concept pruning strategies, the simple
top k selection works better than the deviation-
based thresholding.

1 Introduction

VITALAS is a EU-funded Integrated Project that
aims at the development of a system capable of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301644065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

large-scale indexing and retrieval of video and im-
ages, specifically targeted towards multimedia pro-
fessionals and archivists [1]. This first participa-
tion of VITALAS in the TRECVID benchmark
aims at the evaluation of ideas related to one of
the most challenging research problems VITALAS
faces, namely the indexing and retrieval of mul-
timedia data at the semantic level. We therefore
submitted runs for the High Level Feature Extrac-
tion (HLFE) and Search tasks, with the Search task
focusing on retrieval using concept information.

For the HLFE task, four type ‘A’ and one type
‘a’ runs were submitted. The runs utilize a num-
ber of low level feature vectors describing video
keyframes in terms of color, texture, motion and
keypoint information. These features are presented
in Section 2. However, none of the runs depends
solely on low level features. The focus is on ap-
proaches that process low level feature vectors in
order to generate new descriptions with higher dis-
criminative power, thus improving the ranking of
keyframes with respect to concepts with the use
of classifiers. The methods applied are (i) fusion of
multiple concept scores (Section 3.3), (ii) clustering
in the feature space (Section 3.2) and (iii) feature
selection (Section 3.5). In addition, a donated au-
dio concept detector, that provides scores for 12
audio concepts, is used in one of the runs. Results
indicate that there is still much work to be done
in order for these post-processing approaches to be
efficient. They lead, however, to useful conclusions,
outlined in Section 4.1.

For the search task, our main focus lies on
concept pruning strategies. Observing that a dense
shot concept matrix results in inefficient retrieval,
regarding both space and time, we are investigating
techniques for selecting for each shot an optimal
subset of concepts that should be indexed. The
concept retrieval itself is mapped to a text search
task by using the textual concept description for
building an artificial text collection.

2 Low level features

This section presents the low-level features that are
used for the HLFE task. Depending on the feature
extraction algorithm applied, these can be catego-
rized into “global”, “regional” and “local” features.

2.1 Global features

Global features are extracted directly from the en-
tire video keyframe area. The ones employed are a
variant of the MPEG-7 Color Structure Descrip-

tor(GL-CSD), a variant of the Dominant Color
Descriptor [2] (GL-DCOLOR) and a feature vec-
tor extracted using the Hough transform (GL-
HOUGH). Instead of using the descriptors already
available from the MPEG-7 experimentation model
[3], GL-CSD and GL-DCOLOR have been imple-
mented anew, to allow for certain modifications.

For GL-CSD the image colorspace is trans-
formed to the Gaussian color model [4] and a 3× 3
box is used to compute 128 color structure his-
togram bins (8 × 4 × 4, for color intensity and two
spectral components respectively).

For GL-DCOLOR, octrees [5] are used in or-
der to achieve efficient and fast color reduction in
the keyframe (see also [6]). More specifically, a
color signature is extracted from each keyframe I,

CSI = {(c0, p0), . . . , (cN , pN)} (1)

where each ci is a dominant color and pi is the
corresponding percentage of ci in the image, after
reduction with octrees has been performed. Since
the number of colors N depends on the image, the
Earth Mover’s Distance (EMD) [7] is employed in
order to compare two color signatures. To produce
the final feature vector, a method similar to the
one used in [8] is applied. Since this method is also
used for the extraction of other low level features,
it is presented here for completeness.

Manually labeled image regions corresponding
to 15 concepts are considered1 that form 15 sets
Pi, i = 1, . . . , 15 of reference images (these are de-
noted proto-concepts in [8]). For a keyframe I and
a set Pi two values can be computed, namely the
average and best distance of I to the images in Pi,

Hi
avg =

1

|Pi|

|Pi|
∑

j=0

EMD(CSI , CSPi(j)) (2)

Hi
best = min

j
(EMD(CSI , CSPi(j))) (3)

This approach leads to a 30-dimensional feature
vector for dominant color.

For the description of keyframes based on the
direction of lines detected by the Hough transform,
a simple histogram of angles is used that was ex-
tracted from the Hough accumulator matrix. An
accumulator matrix with 12 angles is used and af-
ter computing the values for the matrix cells, only
values that exceed a predefined threshold and are

1 The concepts are: building, car, charts, crowd, desert, fire,
maps, mountain, road, sky, smoke, snow, US-flag, vegeta-

tion, water and the corresponding image regions have been
manually extracted from images in the TRECVID-2005 de-
velopment set.

local maxima are kept (otherwise they are set to
zero). Adding all rows of the accumulator matrix
leads to a 12-bin angle histogram, that is normal-
ized to a unit vector with its L2 norm to produce
the final feature vector.

2.2 Regional features

Regional features are extracted based on infor-
mation computed at different image regions fol-
lowed by an integration step that produces a sin-
gle representation for the entire keyframe. The
regional features that were used are based on
color (R-DCOLOR), texture (R-WBL, R-FBANK
and R-FBANKR) and motion information (R-
MVECTOR).

Color and texture-based features are all ex-
tracted using the same methodology. Two re-
gion sizes are considered, namely 1

2 and 1
6 of the

keyframe width and height. These two region
sizes correspond to 9 and 121 overlapping image
regions at points (i1

2rx, j 1
2ry), where rx and ry

correspond to the region width and height and
0 ≤ i < 2width

rx
− 1, 0 ≤ j < 2height

ry
− 1. For

each region, a signature is extracted, depending on
the feature used. The feature vector is computed
using the average and best distances from images
of reference concepts, in a manner similar to GL-
DCOLOR,

Hi,sR
avg =

1

|Pi||R|

∑

r∈R

|Pi|
∑

j=0

D(Sr, SPi(j)) (4)

H
i,sR

best = min
r∈R

(
∑

j=0

(Sr, SPi(j))) (5)

where sR is the region size corresponding to the set
of regions R (of the same size), Sr, SPi(j) are the
signatures of the region r and image Pi(j) of the
i-th reference concept respectively and D is a dis-
similarity metric between signatures (the operator
min becomes max when a similarity metric is used
instead). Hence there are two numbers for each
region size sR and reference concept i.

The regional dominant color descriptor (R-
DCOLOR) is a variation of its global counterpart,
that uses the above scheme with only one region
size (1

2 of the image width and height) to take into
account regional color information, by computing a
color signature for each region instead of the entire
image. It still has 30 elements, since two values are
again computed for each of the 15 reference con-
cepts.

For describing texture, two types of features
are used, one based on the integrated Weibull dis-

tribution of edges in a region and and one based
on a filterbank response of each region. For the
Weibull-based features, the approach described in
[8] is followed. The colorspace of each keyframe
is first transformed to the Gaussian Color Model.
Each color channel is then filtered using one Gaus-
sian derivative filter for each image direction (hor-
izontal and vertical). This process is repeated for
two filter scales (i.e., two values of σ). The edges in
each region of the 12 resulting images is assumed
to follow an Integrated Weibull distribution,

γ

2γ
1

γ βΓ(1
γ
)

exp

{

−
1

γ

∣

∣

∣

∣

r − µ

β

∣

∣

∣

∣

1

γ
}

(6)

where β and γ are the distribution parameters and
µ is assumed to be zero (this is ensured by pre-
processing of the region values). Computation of
the β and γ values is performed numerically, while
comparison between two distributions is achieved
using a metric derived in [8] from the Cramér von

Mises statistic C = min(β1,β2)
max (β1,β2)

min(γ1,γ2)
max(γ1,γ2)

. There are

two region sizes, two scales for the Gaussian deriva-
tive filters and two values for each region size and
scale leading to 8 values for each reference concept
and a 120-d feature vector based on the Integrated
Weibull distribution.

A different approach uses a filterbank consist-
ing of two types of ‘difference of Gaussian’ (DoG1
and DoG2) filters and a set of ‘difference of off-
set Gaussian’ (DooG) filters. Details of each fil-
ter can be found in [9]. The mean and standard
deviation of the filter responses are computed for
each region (after the keyframe has been converted
to grayscale) and are used as a signature, i.e.,
SFBANK = [µ1 σ1 µ2 σ2 . . . µNσN] for a filterbank
with N filters, and these are compared against the
reference images using the euclidean distance. For
R-FBANK, the filterbank consists of two DoG1 fil-
ters (with different scales), two DoG2 filters and
twelve DooG filters. For the DooG filters, since
they are directional and symmetric along their two
principal axes, 6 pairs of filters with two different
scales are used to cover the [0, π] angle range. A
single region size is considered (1

2 width and height)
and (4), (5) are computed for each filter separately,
leading to a 16 × 2 × 15 = 480-d feature vector. A
reduced version of this feature is also computed,
using the same procedure, but with one DoG1, one
DoG2 and two DooG filters, leading to a 120-d fea-
ture vector (R-FBANKR).

The R-MVECTOR feature is computed based
on the motion vectors of the encoded video stream.
For each macroblock (16 × 20 in total for the

QVGA resolution videos of TRECVID-2008) the
motion vector is extracted in each frame of the
shot. By adding all vectors, a single motion vec-
tor mij = [mijx mijy]

T
is computed for each mac-

roblock for the entire shot. These motion vectors
are then used at three processing resolutions. For
each resolution r = 0, 1, 2, there exist 1, 5 and 25
equal-sized overlapping regions, i.e., 2r×2r regions
at points (i 20

2r , j 16
2r) for i, j = 0, . . . , 2r−1 and (2r−

1)×(2r−1) regions at points ((i+ 1
2) 20

2r , (j+ 1
2) 16

2r),
for i, j = 0, . . . , 2r − 2 (where point unit is a mac-
roblock).

For each resolution, the mean and standard
deviation of the motion vectors of macroblocks in
each region are stored (4 elements per region). In
addition, for each resolution the standard deviation
of motion for all regions is stored separately (2 ad-
ditional elements for each resolution, except resolu-
tion 0 that only has a single region). This process
leads to R-MVECTOR having 128 elements for the
description of motion in a shot.

2.3 Local features

A feature vector based on local features (L-
KBSURF) is also computed. All images are resized
to half width and height and initially, a set of key-
points are extracted from each keyframe using the
Kadir-Brady detector [10, 11]. For each keypoint,
the SURF [12] descriptor is computed, resulting to
a 64-d feature vector. Then, following an approach
similar to [13], all feature vectors extracted from
the keyframes in the development set are used to
create 50 clusters.

A grid splits each keyframe into 2 × 3 (i.e., 1
2

height by 1
3 width) non-overlapping regions of equal

size. For each keypoint in each region the nearest
cluster center is found and this process leads to
the construction of a 50-bin histogram for each re-
gion. Concatenation of the 6 histograms leads to
the computation of a 300-dimensional feature vec-
tor.

3 High level features

For the high level feature extraction task, the
general model of low level feature extraction, pre-
processing and classification has been used. Since
the pre-processing step itself often involves the use
of classifiers, the classification approach is pre-
sented first.

3.1 The classifier

The base classifier is the SVM classifier with RBF
kernel [14, 15]. Libsvm [16, 17] is the selected im-
plementation for the experiments performed. Still,
directly applying an SVM classifier with cross-
validation for the computation of the optimal clas-
sification parameters (C, γ, or the class weights w+
and w−) suffers from two major drawbacks: (i) It
is computationally demanding, to the degree that
extensive experimentation is impossible at reason-
able cost (in terms of CPU time) (ii) its perfor-
mance may suffer when the positive samples for
a concept are sparse, as is the case for some con-
cepts in this year’s benchmark that have a very low
frequency of occurrence in the training data. The
latter becomes evident when the dimensionality of
the feature space is high.

In order to tackle (at least, partially) these
two problems, a classifier that employs SVM with
rankboost [18] and sampling in each iteration has
been used, such as the one described in [19, 13].
This process is illustrated in Algorithm 3.1. For the
initial step of this algorithm a logarithmic search
for the optimal C parameter of the SVM and γ

parameter of the RBF kernel is performed using
cross-validation. These parameters are then used
for the rest of the iterations.

As illustrated in [13], the rankboost approach
combined with sampling has significantly lower
computational complexity, compared to SVM with
cross-validation. Regarding the problem of sample
sparsity: When very few positive samples for the
high-level feature are available and when these are
not easily discriminated within the feature space,
the problem of overfitting becomes apparent; al-
most all positive samples become support vectors.
Although there is no rigorous evidence that the
employed approach performs better in this aspect,
balancing the positive and negative samples of the
training set and using rankboost in order to empha-
size on misclassified samples can bypass the over-
fitting problem in many cases.

3.2 Clustering in the feature space

In order to examine and exploit possible structures
of samples within each feature space, an approach
based on feature space clustering is also applied for
each feature separately. More specifically, all visual
features have been extracted from the TRECVID-
2005 development set and the k-means algorithm
applied to create 20 clusters for each feature. Thus,
each feature is replaced by a 20-d feature vector of
distances between the feature vector and the 20

Algorithm 1 Classification with rankboost, sam-
pling and SVM

Input: A training set TC for a high level feature
C and two disjoint sets T1, T−1 ⊆ TC of positive
and negative samples of C. A threshold on the
maximum number of positive samples selected Mp

and the number of iterations N .
Output: A set of weights αi and trained classifi-
cation models hi, i = 1, . . . , N .

1: /* Initialize */

2: v1(x) =

{

1
|T1|

x ∈ T1

1
|T−1|

x ∈ T−1

3: w = min(Mp, |T1|)
4: for i = 1 to N do
5: Ts = sample(TC , vi, w)
6: /* Train the i’th model, hi : X → R */
7: hi = train svm(Ts)
8: r =

∑

x∈TC
vi(x)yjhi(x), αi = 1

2 log
(

1+r
1−r

)

9: vi+1 =

vi(x) exp(−αihi(x))
P

x∈T1
vi(x) exp(−αihi(x)) x ∈ T1

vi(x) exp(αihi(x)
P

x∈T−1
vi(x) exp(αihi(x)) x ∈ T−1

10: end for

where the sampling routine is

1: sample(T, v, w)
2: for all x ∈ T do
3: /* Pick a random number in [0, 1] */
4: r = random([0, 1])
5: p = v(x)w
6: if p > r then
7: select x (x ∈ Ts)
8: end if
9: end for

10: return Ts

Prediction can be performed using H(x) =
∑N

i=1 αihi(x)

cluster centers computed.
The general goals of this approach are (i) To

reduce dimensionality, since only 20 clusters are
used within feature spaces with hundreds of dimen-
sions. (ii) For feature spaces where samples form
groups or have structure, to capture and describe
that structure. For selecting the number of clus-
ters, it has been assumed that all feature spaces
will have the same number of clusters for all con-
cepts. The number of clusters has been decided
after experimenting in the TRECVID-2005 devel-
opment set using the LSCOM annotations [20, 21]
for various high level features.

3.3 Fusion of LSCOM concept scores

Describing a concept in terms of low level features
is not always efficient, due to the poor discrimina-
tive ability of the features. It is possible, however,
to use the output of concept detectors (i.e., classi-
fier scores) to describe other concepts. The most
apparent and intuitive justification for this is the
strong correlation that may exist between concepts.
This correlation may be due to relations such as
hyponymy, meronymy etc, or simply by a high co-
occurrence frequency. Hence it is very reasonable
that one would look for the concept ’Sea’, for ex-
ample, when searching for the concept ’Boat’. The
questions that automatically arise with respect to
the practical application of such an approach have
to do with: (i) The selection of appropriate con-
cepts and (ii) the detection of these concepts.

Given a high level feature C, the LSCOM on-
tology [20] and corresponding annotations [21], it
is possible to select a set of L LSCOM concepts SC

that are relevant to C and train a set of L classifiers
HCi

, Ci ∈ SC using the TRECVID-2005 develop-
ment set and some low level feature. For a sample
x ∈ TC (i.e., the training set of C), the score out-
puts of HCi

can be concatenated in a feature vector

Fx = [HC1
(x) . . . HCL

(x)] .

The feature vectors Fx can be used to train a final
classifier that will compute the final ranking for C.

For the concept set SC , only LSCOM concepts
with more than 50 annotated positive samples are
considered. Initially, experiments were performed
with manual selection of the concepts Ci in SC .
The selection was performed on the basis of visual
or conceptual similarity, as well as the expected
co-occurrence of Ci with C. For evaluation, 5-fold
cross-validation was performed on the development
set and the average precision achieved was not sat-
isfactory.

Using a different approach, selection of a con-
cept Ci is performed based on the confidence on
its detector HCi

. The judgment is made on the
basis of both the number of positive samples used
during training and its performance on a held-out
test dataset. A concept is selected if the number
of positive samples and the average precision ex-
ceed predefined thresholds. No manual selection is
performed, apart from the removal of named enti-
ties from the set. This process leads to a set SC

of 89 concepts that is chosen to be the same for
all concepts C, regardless of the low level feature
that is used originally for building HCi

. Repeating
the experiment using this set, lead to a significant

improvement in the average precision achieved.
These observations lead to an interesting con-

clusion: A good choice of feature Fx is not neces-
sarily obtained when the concepts in the set SC are
conceptually related or have a high co-occurrence
with C. What is more important is that the models
HCi

are robust, in the sense that (i) positive sam-
ples in the training dataset used to produce them
are not too sparse and (ii) HCi

results into average
precision values significantly above random selec-
tion.

3.4 Audio concepts

Although no low level audio features have been
used in the experiments, audio information is in-
cluded in one of the runs by using the score output
of an audio concept detector donated by the Net-
media team of Fraunhofer IAIS. More specifically,
the audio concept detector (based on [22]) performs
segmentation of each video and for each audio seg-
ment produces the log-likelihood of a set of 12 audio
concepts2. Audio segments are mapped to shots
and for each shot and each audio concept the max-
imum log-likelihood from all audio segments is se-
lected, thus forming a 12-d vector.

3.5 Feature selection

The combined use (via simple vector concatena-
tion/early fusion) of all low level feature vectors,
the feature vectors produced from score fusion and
clustering as well as the audio concept scores yields
a feature vector of 2071 dimensions. Apart from
computational complexity issues, for such high di-
mensional spaces the classifier performance deteri-
orates significantly. This becomes apparent if the
relatively small number of training samples is con-
sidered. In order to remove redundant features and
at the same time select the most informative ones,
the feature selection procedure described in [23] is
employed.

4 HLFE runs

The submitted high-level feature extraction runs
aim at examining the performance of various sys-
tem configurations that use the low level features
and pre-processing components described in the
previous sections. The annotation unit is the video
shot. The TRECVID-2005 and TRECVID-2008

2 the audio concepts are applause, cheering, crowd noise, ex-

plosion, laughter, silence, singing, speech, street noise, tele-

phone noise, traffic, whistling

development sets have been used for system de-
velopment and training. The annotations used
are the LSCOM annotations and the result of
the TRECVID-2008 collaborative annotation effort
kindly organized by LIG and LIRIS groups [24]. No
special keyframe extraction algorithm is applied in
the test set, other than a simple periodic selection
policy.

Figure 1 illustrates the system structure.
Dashed lines correspond to optional system opera-
tions.

Figure 1: The various components used in the
HLFE runs and the ways they interconnect. Dif-
ferent configurations occur by activating different
dashed lines.

Concept score fusion for selected low level
features (Run 4) Initially, the idea of using the
89 LSCOM concept scores is evaluated. The fea-
tures used are R-FBANK, R-WBL, GL-CSD and
L-KBSURF. The 89 predictor scores are evaluated
for each feature and the resulting feature vectors
are concatenated, leading to a feature vector of 356
values that is directly used for training the final
high level feature models.

Concept score fusion with feature selection
(Run 2) This run is similar to run 4. However,
instead of manually selecting the original low level
features to use, all low level features are selected
initially (i.e., 9 × 89 = 801 dimensions). By em-
ploying feature selection with the same number of

features as the previous run (i.e., 356), these two
runs can be compared.

Concept score fusion and distances from
clusters with feature selection (Run 3) Just
like in run 2, but instead of using only fusion of
scores, cluster distances are also added. Again,
feature selection leads from the original to 356 fea-
tures, so that the results can be compared against
the previous runs.

Concept score fusion, low level features and
audio concept scores with feature selection
(Run 1) In this run, all low level feature vectors
and audio concept scores are concatenated and fea-
ture selection is applied to produce a 120-d feature
vector. This feature vector is then concatenated
with the scores used in run 2, forming a 476-d vec-
tor that is used in the final classification stage.

Concept score fusion for selected low level
features, with train and test sets from differ-
ent datasets (Run 5) In this mandatory type
’a’ run the idea of run 2 is applied, but this time the
training and test sets come from different datasets.
More specifically, the TRECVID-2005 development
set was split in two disjoint sets. The first set was
used to train the models that compute the 89 con-
cept scores in all experiments. These models were
applied in the second set, that was used to train
the final classifiers for the high level features. This
allowed the creation of models only for 19 out of 20
high level features, since no annotations for “Two
people” were found for the TRECVID-2005 devel-
opment set.

4.1 HLFE results

The results of the HLFE task are summarized in
Table 1. The scores are in terms of inferred average
precision [25, 26], as provided by the TRECVID-
2008 organizers [27]. The most important observa-
tions to be made are the following:

1. Compared to early fusion of low-level features
and feature space clustering, concept score fu-
sion appears to be the most efficient represen-
tation. InfAP attained in run 4, with manually
selected type of score achieves results compa-
rable to the better runs (runs 1 and 2).

2. Fusion with additional concept scores (i.e.,
originating from additional low level features)
combined with feature selection improves the

results. In fact, this approach (run 2) achieved
the best results overall.

3. The use of additional information of low-level
features and audio concept scores in run 1 does
not improve the results. Actually, the results
are worse than those of run 2. This can be
attributed to the increase in the number of di-
mensions.

4. Feature space clusters do not provide good re-
sults. Further investigation is in order, so as
to determine if this is due to the use of a non-
representative set for the cluster formation, or
due to the small number of clusters, or simply
because this approach is not efficient.

5. For the type ’a’ system (run 5), the poor re-
sults can be attributed to the fact that the
system is trained with the same dataset that
is used to create the 89 concept models. This
leads to a bias towards the characteristics of
that specific dataset and finally to poor gener-
alization.

5 Concept Search

This section describes our experiments and sub-
mission to the search task. Since this year’s test
queries are created with the obvious goal to ham-
per a search solely based on automatic recognized
speech (ASR), concept search becomes an impor-
tant issue. With concept search we refer to the
search on a collection of resources (here shots) that
had been annotated by concept detectors with the
probabilities for each concept to occur in a re-
source. Such a concept annotated collection would
be the output of the TRECVID high-level feature
extraction task.

Concept search typically comes with the prob-
lem that queries are formulated in search terms
rather than in concepts. Hence, a mapping from
the large term space to the typically quite restricted
concept space, defined by the number of recognized
concepts, is required. The basic idea of our concept
search is to exploit the text descriptions of concepts
to create an artificial text collection, where the con-
cept annotations of a given shot are translated to
text. Having such a text annotated collection, we
can employ common text retrieval models to return
a ranked list of shots. When building such an artifi-
cial text collection, concept pruning – reducing the
dense shot concept matrix – becomes an important
issue for this approach, which is investigated in our
experiments.

No. HL Feature Run 1 Run 2 Run 3 Run 4 Run 5
1. Classroom 0.0010 0.0040 0.0230 0.0110 0
2. Bridge 0.0030 0.0030 0.0020 0.0040 0
3. Emergency Vehicle 0.0020 0.0210 0.0030 0.0020 0.0010
4. Dog 0.0180 0.0240 0.0060 0.0040 0.0010
5. Kitchen 0.0450 0.0620 0.0290 0 0.0060
6. Airplane flying 0 0.0780 0.0570 0.0690 0.0040
7. Two people 0.0070 0.0290 0.0290 0.0250 0.0010
8. Bus 0.0020 0.0010 0.0010 0.0010 0
9. Driver 0.0280 0.0310 0.0330 0.0380 0.0040

10. Cityscape 0.0600 0.0380 0.0350 0.0350 0.0100
11. Harbor 0.0050 0.0030 0.0030 0.0030 0.0030
12. Telephone 0.0170 0.0020 0.0070 0.0200 0.0010
13. Street 0.0770 0.0650 0.0240 0.0220 0.0080
14. Demonstration Or Protest 0.0020 0.0030 0.0020 0.0010 0.0010
15. Hand 0.0460 0.0290 0.0330 0.0270 0.0160
16. Mountain 0.0420 0.0540 0.0540 0.0520 0.0510
17. Nighttime 0.0910 0.0950 0.0780 0.1260 0.0240
18. Boat Ship 0.0990 0.0810 0.0590 0.0740 0.0520
19. Flower 0.0180 0.0390 0.0160 0.0150 0.0020
20. Singing 0.0170 0.0140 0.0110 0.0100 0.0050

Mean InfAP 0.0290 0.0338 0.0253 0.0270 0.0095

Table 1: Overview of results for the High level feature extraction task.

Although we submitted runs to the high-level
feature extraction task, our search task submission
is not based on our own concept detector output.
Instead we used the concept detector output from
Columbia University (average fusion score [28]),
which were kindly made publicly available.

5.1 Manually Assisted Query For-

mulation

The test queries are provided only as natural lan-
guage queries. Since we are interested in investi-
gating concept search rather than linguistic query
analysis, we manually reduced the search topics
to simple keyword queries to avoid further error
sources that are not related to the tested retrieval
method. As an example, the topic 226 “Find shots
of one or more people with mostly trees and plants
in the background no road or building visible” is
translated to “people with trees and plants in the
background”. The manual reduction followed a few
guiding rules: (1) commands to the search engine
as “find shots” are removed, (2) quantity measures
such as “one or more” are removed, (3) negative
statements as “no road or building” are removed,
(4) and meta-descriptions of the shot such as “fill-
ing more than half of the frame area” are removed.

The provided machine translated queries in

Dutch language were manually reduced to keyword
queries following the same policy. In this case, we
also corrected translation failures found in the ma-
chine translation, again with the aim to avoid fail-
ure sources outside the tested retrieval method.

5.2 From Concepts To Text

Related research on concept search addresses the
mapping from term to concept space by translating
the term query into a concept query. Aly et al. [29]
are using textual concept descriptions to find the
most related concepts to given a term query. They
also improve the query mapping to concept space
by enriching the textual concept description with
the abstract of the concept’s Wikipedia article.

In contrast to these approaches, we do not
translate the term query into a concept query, but
the concept collection into an artificial text collec-
tion. The text collection is built by merging the
textual context descriptions of all concepts belong-
ing to a certain shot according to their detected
probability of occurrence.

Textual concept descriptions are provided
with the set of used concepts. We extend these
descriptions as shown by Aly et al. [29] with the
abstracts of those Wikipedia articles that match
the concept name best.

When merging concept descriptions to an arti-
ficial textual description of a shot, we sum up term
counts Cntt,s according to the concepts’ probabili-
ties of occurrence xc,s in that shot:

Cntt,s =
∑

c∈C

xc,s Cntt,c. (7)

To clarify the notation, xc,s will ideally be the prob-
ability of concept c given the low-level feature vec-
tor ~F of the shot. In practice, this detector score is
a value in the range [0, 1] but does not always rep-
resent a real probability. Whereas Cntt,s denotes
the calculated count of term t in the artificial shot
text, Cntt,c represents the term count of t in the
concept description of c.

5.3 Concept Pruning

A concept annotated collection is typically repre-
sented by a dense shot concept matrix. For any
given shot, we have detector scores for all concepts
in the concept space C. This is in fact a major
difference to text collections where each document
is described only by the terms that occur in the
document, but not by terms that do not occur. As
a result of the dense matrix, our artificial text col-
lection would become extraordinary large and the
text search on an inverted index rather inefficient.
In order to avoid these problems, we show here dif-
ferent techniques to prune the dense matrix with
the aim to select per shot only those concepts hav-
ing a high likelihood of occurrence.

Top k Selection This method simply selects for
each shot the top k concepts having the highest
detector score. All other concept scores for the shot
are deleted from the score concept matrix.

Deviation Thresholding While the previously
suggested top k selection is the obvious method
when the detector scores come as real probabili-
ties and hence represent values that are comparable
across different concepts, in practice, this is seldom
the case. Instead we find certain concept detectors
delivering higher values than others even for con-
cepts that are unlikely to occur often. Apart from
noisy detector scores, a concept that occurs with
a high likelihood in a large fraction of shots is less
valuable for retrieval than concepts showing a more
distinct distribution among shots.

In order to distinguish between the two cases,
we analyze the distribution of the scores xc of a cer-
tain concept over all shots, and calculate for each

concept its expected value x̄c and standard devia-
tion σc. Instead of a top k selection, we determine
now the set of most promising concepts for a given
shot by a deviation-based threshold:

Cs = {c ∈ C | (xc,s − x̄c) > 2σc}. (8)

Combined Methods The deviation-based
threshold can solve the above described problems
with concept scores, but neglects the actual
detector outcome to a large extent. We will find
a number of concepts in the result set for a given
shot that come with rather low score values.
Assuming that the absolute detector values are
not completely meaningless, we tried to combine
both above suggested concept selection methods
by selecting the top k concepts coming with the
highest value zc,s:

zc,s = xc,s

(xc,s − x̄c)

σc

. (9)

The new defined z value combines the actual score
value x with its relative deviation.

5.4 Results and Conclusion

For the final text ranking on the generated text cor-
pus we employed the PF/Tijah XML [30] retrieval
system using the NLLR retrieval model. We will
report here about the main evaluation measure be-
ing mean inferred average precision infAP [26]. An
overview of the results is shown in Table 2.

The run named ASR is solely based on the
automatic speech recognition output. For creating
a shot-segmented text corpus, we concatenated the
one-best output of the speaker segments provided
by Huijbregts et al. [31] which overlapped with a
given shot. On average 2.6 speaker segments over-
lapped with one shot.

Run TOP20 represents the top k selection ap-
proach using the 20 best scored concepts per shot,
whose textual descriptions are merged as described
above. The deviation-based thresholding is tested
with run SIGMA2. Combined concept selection
methods are represented by the runs DEVTOP20
and DEVTOP50, using the top 20, respectively top
50 highest rated concepts. The final run ASR-
DEVTOP20 combines the relevance evidence of the
two correspondingly named runs by adding their
log-based scores.

The measured mean inferred average precision
values remain rather low in all cases. We had ex-
pected low values for the ASR run, due to the
queries asking for explicitly visual features. The

Run infAP P@10
ASR 0.0124 0.0596
TOP20 0.0167 0.0500
SIGMA2 0.0085 0.0208
DEVTOP20 0.0155 0.0458
DEVTOP50 0.0145 0.0354
ASR-DEVTOP20 0.0238 0.0625

Table 2: Result Overview

concept-based ranking, however, does not solve the
shortcomings of pure ASR. Compared to other ap-
proaches, the retrieval quality of the proposed tech-
niques remains around the median of all TRECVID
runs.

Despite the low overall precision, the results
indicate that the simple top k selection and the
combined concept selection methods are more ef-
fective than the deviation-based thresholding. Fur-
thermore, k should be set to a value smaller than
50. The combination of ASR and concept retrieval
finally shows the best performance and hence sup-
ports the argument that video retrieval has to be
cross media retrieval. Our suggested method of us-
ing an artificially generated text collection for con-
cept retrieval comes here with the advantage to al-
low an easy integration of concept and ASR based
ranking.

Acknowledgments

The authors are grateful to the Netmedia team
of Fraunhofer IAIS and especially Jochen Schwen-
ninger and Daniel Schneider for kindly providing
the audio concept detector used in the experiments.
Christos Diou is supported by the Greek State
Scholarships Foundation.

References

[1] VITALAS, Integrated Project funded by the
IST 6th Framework Programme of the Eu-
ropean Commission, FP6-045389, visit http:

//vitalas.ercim.org for more information.

[2] B.S. Manjunath, P. Salembier, and T. Sikora,
editors. Introduction to MPEG-7: Multimedia
Content Description Interface. Wiley, 2002.

[3] T. Sikora. The mpeg-7 visual standard for con-
tent description-an overview. IEEE Trans. on
Circuits and Systems for Video Technology, 11
(6):696–702, June 2001.

[4] J.-M. Geusebroek, R. van den Boomgaard,
A.W.M. Smeulders, and H. Geerts. Color in-
variance. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 23(12):1338–
1350, December 2001.

[5] M Gervautz and W. Purgathofer. A simple
method for color quantization: Octree quanti-
zation. In New Trends in Computer Graphics.
Springer Verlag, Berlin, 1988.

[6] C. Diou, N. Batalas, and A. Delopoulos. In-
dexing and browsing of color images: De-
sign considerations. In Advances in Semantic
Media Adaptation and Personalization, vol-
ume 93 of Studies in Computational Intelli-
gence, pages 329–346. Springer, 2008.

[7] Y. Rubner, C. Tomasi, and Leonidas J.
Guibas. The earth mover’s distance as a met-
ric for image retrieval. International Journal
of Computer Vision, 40(2):99–121, November
2000.

[8] J. C. van Gemert, J.-M. Geusebroek, C.J.
Veenman, C.G.M. Snoek, and A.W.M. Smeul-
ders. Robust scene categorization by learning
image statistics in context. In CVPRW ’06:
Proceedings of the 2006 Conference on Com-
puter Vision and Pattern Recognition Work-
shop. IEEE Computer Society, 2006.

[9] J. Malik and P. Perona. Preattentive texture
discrimination with early vision mechanisms.
Journal of the Optical Society of America, 7
(5):923–932, May 1990.

[10] T. Kadir and M. Brady. Scale, saliency
and image description. International Journal
of Computer Vision, 45(2):83–105, November
2001.

[11] T. Kadir, A. Zisserman, and M. Brady. An
affine invariant salient region detector. In In
Proceedings of the 8th European Conference on
Computer Vision, pages 228–241, 2004.

[12] H. Baya, A. Essa, T. Tuytelaarsb, and
L. Van Goola. Speeded-up robust features
(surf). Computer Vision and Image Under-
standing, 110(3):346–359, June 2008.

[13] D. Wang, X. Liu, L. Luo, J. Li, and B. Zhang.
Video diver: generic video indexing with di-
verse features. In MIR ’07: Proceedings of
the international workshop on Workshop on
multimedia information retrieval, pages 61–70.
ACM, 2007.

[14] V. Vapnik. Statistical Learning Theory. Wiley-
Interscience, 1989.

[15] C.J.C. Burges. A tutorial on support vector
machines for pattern recognition. Data Mining
and Knowledge Discovery, 2:121–167, 1998.

[16] C.-C. Chang and C.-J. Lin. Libsvm: A library
for support vector machines. Available: http:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

[17] h-W. Hsu, C.-C. Chang, and C.-J. Lin. A
practical guide to support vector classifica-
tion. Technical report, Department of Com-
puter Science and Information Engineering,
National Taiwan University, 2003.

[18] Y. Freund, R. Iyer, R.E. Schapire, and
Y. Singer. An efficient boosting algorithm for
combining preferences. Journal of Machine
Learning Research, 4:933–969, 2003.

[19] D. Wang, J. Li, and B. Zhang. Relay boost
fusion for learning rare concepts in multime-
dia. In Image and Video Retrieval, volume
4071 of Lecture Notes in Computer Science,
pages 271–280. Springer, 2006.

[20] M. Naphade, J.R. Smith, J. Tesic, S.-F.
Chang, W. Hsu, L. Kennedy, A. Hauptmann,
and J. Curtis. Large-scale concept ontology
for multimedia. IEEE Multimedia, 13(3):86–
91, July-Sept. 2006.

[21] Lscom lexicon definitions and annotations
version 1.0. DTO Challenge Workshop on
Large Scale Concept Ontology for Multime-
dia, Columbia University ADVENT Technical
Report, 217-2006-3, March 2006.

[22] K. Biatov and J. Köhler. Improvement speaker
clustering using global similarity features. In
In Proceedings of the 9th International Con-
ference on Spoken Language Processing, Inter-
speech 2006 - ICSLP, Pittsburgh, PA, USA,
September 17-21 2006. International Speech
Communication Association.

[23] H. Peng, F. Long, and Ding C. Feature se-
lection based on mutual information: Cri-
teria of max-dependency, max-relevance and
min-redundancy. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 27(8):
1226–1238, August 2005.

[24] G Quénot and S. Ayache. Trecvid-2008 col-
laborative annotation. Available online at
http://mrim.imag.fr/tvca/, 2008.

[25] E. Yilmaz and J.A. Aslam. Estimating average
precision with incomplete and imperfect judg-
ments. In CIKM ’06: Proceedings of the 15th
ACM international conference on Information
and knowledge management, pages 102–111.
ACM, 2006.

[26] Javed A. Aslam and Emine Yilmaz. Inferring
document relevance from incomplete informa-
tion. In CIKM ’07: Proceedings of the six-
teenth ACM conference on Conference on in-
formation and knowledge management, pages
633–642. ACM, 2007. ISBN 978-1-59593-803-
9.

[27] A.F. Smeaton, P. Over, and W. Kraaij.
Evaluation campaigns and trecvid. In MIR
’06: Proceedings of the 8th ACM Interna-
tional Workshop on Multimedia Information
Retrieval, pages 321–330, 2006.

[28] Yu-Gang Jiang, Akira Yanagawa, Shih-Fu
Chang, and Chong-Wah Ngo. Cu-vireo374:
Fusing columbia374 and vireo374 for large
scale semantic concept detection. Techni-
cal Report 223-2008-1, Columbia University,
2008.

[29] Robin Aly, Djoerd Hiemstra, Arjen de Vries,
and Franciska de Jong. A probabilistic ranking
framework using unobservable binary events
for video search. In CIVR ’08: Proceedings of
the 2008 international conference on Content-
based image and video retrieval, pages 349–
358. ACM, 2008. ISBN 978-1-60558-070-8.

[30] Djoerd Hiemstra, Henning Rode, R. van Os,
and J. Flokstra. Pftijah: text search in an xml
database system. In Proceedings of the 2nd In-
ternational Workshop on Open Source Infor-
mation Retrieval (OSIR), Seattle, WA, USA,
pages 12–17. Ecole Nationale Supérieure des
Mines de Saint-Etienne, 2006.

[31] Marijn Huijbregts, Roeland Ordelman, and
Franciska de Jong. Annotation of hetero-
geneous multimedia content using automatic
speech recognition. In Bianca Falcidieno,
Michela Spagnuolo, Yannis S. Avrithis, Ioan-
nis Kompatsiaris, and Paul Buitelaar, editors,
SAMT, volume 4816 of Lecture Notes in Com-
puter Science, pages 78–90. Springer, 2007.
ISBN 978-3-540-77033-6.

