188 research outputs found

    Anisotropic Diffusion Partial Differential Equations in Multi-Channel Image Processing : Framework and Applications

    Get PDF
    We review recent methods based on diffusion PDE's (Partial Differential Equations) for the purpose of multi-channel image regularization. Such methods have the ability to smooth multi-channel images anisotropically and can preserve then image contours while removing noise or other undesired local artifacts. We point out the pros and cons of the existing equations, providing at each time a local geometric interpretation of the corresponding processes. We focus then on an alternate and generic tensor-driven formulation, able to regularize images while specifically taking the curvatures of local image structures into account. This particular diffusion PDE variant is actually well suited for the preservation of thin structures and gives regularization results where important image features can be particularly well preserved compared to its competitors. A direct link between this curvature-preserving equation and a continuous formulation of the Line Integral Convolution technique (Cabral and Leedom, 1993) is demonstrated. It allows the design of a very fast and stable numerical scheme which implements the multi-valued regularization method by successive integrations of the pixel values along curved integral lines. Besides, the proposed implementation, based on a fourth-order Runge Kutta numerical integration, can be applied with a subpixel accuracy and preserves then thin image structures much better than classical finite-differences discretizations, usually chosen to implement PDE-based diffusions. We finally illustrate the efficiency of this diffusion PDE's for multi-channel image regularization - in terms of speed and visual quality - with various applications and results on color images, including image denoising, inpainting and edge-preserving interpolation

    MS-PS: A Multi-Scale Network for Photometric Stereo With a New Comprehensive Training Dataset

    Get PDF
    The photometric stereo (PS) problem consists in reconstructing the 3D-surface of an object, thanks to a set of photographs taken under different lighting directions. In this paper, we propose a multi-scale architecture for PS which, combined with a new dataset, yields state-of-the-art results. Our proposed architecture is flexible: it permits to consider a variable number of images as well as variable image size without loss of performance. In addition, we define a set of constraints to allow the generation of a relevant synthetic dataset to train convolutional neural networks for the PS problem. Our proposed dataset is much larger than pre-existing ones, and contains many objects with challenging materials having anisotropic reflectance (e.g. metals, glass). We show on publicly available benchmarks that the combination of both these contributions drastically improves the accuracy of the estimated normal field, in comparison with previous state-of-the-art methods

    Variational Approaches to the Estimation, Regularization and Segmentation of Diffusion Tensor Images

    Get PDF
    Diffusion magnetic resonance imaging probes and quantifies the anisotropic diffusion of water molecules in biological tissues, make it possible to non-invasively infer the architecture of the underlying structures. In this chapter, we present a set of new techniques for the robust estimation and regularization of diffusion tensor images (DTI) as well as a novel statistical framework for the segmentation of cerebral white matter structures from this type of dataset. Numerical experiments conducted on real diffusion weighted MRI illustrate the technique and exhibit promising results

    A high-quality video denoising algorithm based on reliable motion estimation

    Get PDF
    11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IIIAlthough the recent advances in the sparse representations of images have achieved outstanding denosing results, removing real, structured noise in digital videos remains a challenging problem. We show the utility of reliable motion estimation to establish temporal correspondence across frames in order to achieve high-quality video denoising. In this paper, we propose an adaptive video denosing framework that integrates robust optical flow into a non-local means (NLM) framework with noise level estimation. The spatial regularization in optical flow is the key to ensure temporal coherence in removing structured noise. Furthermore, we introduce approximate K-nearest neighbor matching to significantly reduce the complexity of classical NLM methods. Experimental results show that our system is comparable with the state of the art in removing AWGN, and significantly outperforms the state of the art in removing real, structured noise

    Tensor field interpolation with PDEs

    Get PDF
    We present a unified framework for interpolation and regularisation of scalar- and tensor-valued images. This framework is based on elliptic partial differential equations (PDEs) and allows rotationally invariant models. Since it does not require a regular grid, it can also be used for tensor-valued scattered data interpolation and for tensor field inpainting. By choosing suitable differential operators, interpolation methods using radial basis functions are covered. Our experiments show that a novel interpolation technique based on anisotropic diffusion with a diffusion tensor should be favoured: It outperforms interpolants with radial basis functions, it allows discontinuity-preserving interpolation with no additional oscillations, and it respects positive semidefiniteness of the input tensor data

    Mathematical morphology on tensor data using the Loewner ordering

    Get PDF
    The notions of maximum and minimum are the key to the powerful tools of greyscale morphology. Unfortunately these notions do not carry over directly to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this paper extends the maximum and minimum operation to the tensor-valued setting. This provides the ground to establish matrix-valued analogues of the basic morphological operations ranging from erosion/dilation to top hats. In contrast to former attempts to develop a morphological machinery for matrices, the novel definitions of maximal/minimal matrices depend continuously on the input data, a property crucial for the construction of morphological derivatives such as the Beucher gradient or a morphological Laplacian. These definitions are rotationally invariant and preserve positive semidefiniteness of matrix fields as they are encountered in DT-MRI data. The morphological operations resulting from a component-wise maximum/minimum of the matrix channels disregarding their strong correlation fail to be rotational invariant. Experiments on DT-MRI images as well as on indefinite matrix data illustrate the properties and performance of our morphological operators

    Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing

    Get PDF
    Indirect ophthalmoscopy (IO) is the standard of care for evaluation of the neonatal retina. When recorded on video from a head-mounted camera, IO images have low quality and narrow Field of View (FOV). We present an image fusion methodology for converting a video IO recording into a single, high quality, wide-FOV mosaic that seamlessly blends the best frames in the video. To this end, we have developed fast and robust algorithms for automatic evaluation of video quality, artifact detection and removal, vessel mapping, registration, and multi-frame image fusion. Our experiments show the effectiveness of the proposed methods
    corecore