16 research outputs found

    Research and development in optical biosensors for determination of toxic environmental pollutants.

    Get PDF
    The detection of pollutants (such as toxins, heavy metal ions, and pesticides) in water and food plays an important role in human health and safety regulations. Different optical biosensing techniques enabling the monitoring of these compounds were chosen for this study. Low molecular weight (LMW) environmental toxins, such as simazine, atrazine, nonylphenol and T-2 mycotoxin were registered with the methods of surface plasmon resonance (SPR) and the recently developed total internal reflection ellipsometry (TIRE). The immune assay approach was exploited for in situ registration of the above toxins with specific antibodies immobilized onto a gold surface via a polyelectrolyte layer using electrostatic self-assembly (ESA) technique. TIRE showed a higher sensitivity than the SPR technique. The obtained responses of the TIRE method were higher than estimated for the immune binding of single molecules of nonylphenol or T-2 mycotoxin. The mechanism of the binding of large aggregates of these toxins to respective antibodies was suggested as a possible reason for this. The formation of large molecular aggregates of toxin molecules on the surface was later proven by the AFM study.The prototype of the portable sensor array device for water pollution monitoring was based on a SiO[2]/Si[3]n[4] planar waveguide with a sensing window coated with ESA film containing pH sensitive organic chromophore molecules and different enzymes (namely, urease, acetyl- and butyryl-cholinesterase) adsorbed on a disposable nylon membrane. The sensor was capable of registration of enzyme reactions as well as their inhibition by traces of some typical water pollutants, such as heavy metal ions Cd[2+], Pb[2+], and Ni[2+], and pesticides imidacloprid and DVDP over a wide range of concentrations (from 1000 ppb down to 0.1 ppb). A portable prototype sensor array device comprises a fan-beam laser diode, a semi-cylindrical lens, a planar waveguide with a three-channel cell attached, and a CCD array photodetector. Dedicated software was developed for CCD image processing and further data analysis with an artificial neural network.The large internal surface area within a small volume, efficient room-temperature visible photoluminescence and biocompatibility of porous silicon (PS) has stimulated recent interest in its applications for sensor development. The method of spectroscopic ellipsometry was applied to study in situ the adsorption of bovine serum albumin (BSA) into PS. The porosity and amount of adsorbed BSA were determined by fitting the ellipsometric data to the Bruggeman effective medium approximation model. The presence of intermediate adsorbed layers of polyelectrolytes was found to increase protein adsorption

    Mycotoxin biosensor based on optical planar waveguide

    Get PDF
    The research aim of this work is to develop a simple and highly sensitive optical biosensor for detection of mycotoxins. This sensor is built on a planar waveguide operating on the polarization interferometry principle, i.e., detecting a phase shift between p- and s-components of polarized light developed during the binding of analyte molecules. The operation of the proposed sensor is similar to that of a Mach⁻Zehnder interferometer, while its design is much simpler and it does not require splitting the waveguide into two arms. The refractive index sensitivity of the polarization interferometer sensor was in the range of 5200 radians per refractive index unit (RIU). Several tests were conducted to detect ochratoxin A (OTA) at different concentrations in direct immunoassay with specific antibodies immobilized in the sensing window. The lowest concentration of OTA of 0.01 ng/mL caused a phase shift of nearly one period. The results obtained prove high sensitivity of the sensors, which are capable of detecting even lower concentrations of mycotoxins at the ppt (part-per-trillion) level

    Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes

    Get PDF
    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon-exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed for self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon-exciton coupling is sensitive to the specific presentation of the pigment molecules

    A synthetic biological quantum optical system

    Get PDF
    In strong plasmon–exciton coupling, a surface plasmon mode is coupled to an array of localized emitters to yield new hybrid light–matter states (plexcitons), whose properties may in principle be controlled via modification of the arrangement of emitters. We show that plasmon modes are strongly coupled to synthetic light-harvesting maquette proteins, and that the coupling can be controlled via alteration of the protein structure. For maquettes with a single chlorin binding site, the exciton energy (2.06 ± 0.07 eV) is close to the expected energy of the Qy transition. However, for maquettes containing two chlorin binding sites that are collinear in the field direction, an exciton energy of 2.20 ± 0.01 eV is obtained, intermediate between the energies of the Qx and Qy transitions of the chlorin. This observation is attributed to strong coupling of the LSPR to an H-dimer state not observed under weak coupling

    A novel design strategy for nanoparticles on nanopatterns: interferometric lithographic patterning of Mms6 biotemplated magnetic nanoparticles

    Get PDF
    Nanotechnology demands the synthesis of highly precise, functional materials, tailored for specific applications. One such example is bit patterned media. These high-density magnetic data-storage materials require specific and uniform magnetic nanoparticles (MNPs) to be patterned over large areas (cm2 range) in exact nanoscale arrays. However, the realisation of such materials for nanotechnology applications depends upon reproducible fabrication methods that are both precise and environmentally-friendly, for cost-effective scale-up. A potentially ideal biological fabrication methodology is biomineralisation. This is the formation of inorganic minerals within organisms, and is known to be highly controlled down to the nanoscale whilst being carried out under ambient conditions. The magnetotactic bacterium Magnetospirillum magneticum AMB-1 uses a suite of dedicated biomineralisation proteins to control the formation of magnetite MNPs within their cell. One of these proteins, Mms6, has been shown to control formation of magnetite MNPs in vitro. We have previously used Mms6 on micro-contact printed (ΌCP) patterned self-assembled monolayer (SAM) surfaces to control the formation and location of MNPs in microscale arrays, offering a bioinspired and green-route to fabrication. However, ΌCP cannot produce patterns reliably with nanoscale dimensions, and most alternative nanofabrication techniques are slow and expensive. Interferometric lithography (IL) uses the interference of laser light to produce nanostructures over large areas via a simple process implemented under ambient conditions. Here we combine the bottom-up biomediated approach with a top down IL methodology to produce arrays of uniform magnetite MNPs (86 ± 21 nm) with a period of 357 nm. This shows a potentially revolutionary strategy for the production of magnetic arrays with nanoscale precision in a process with low environmental impact, which could be scaled readily to facilitate large-scale production of nanopatterned surface materials for technological applications

    Research and development in optical biosensors for determination of toxic environmental pollutants

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes.

    No full text
    Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon-exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed for self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon-exciton coupling is sensitive to the specific presentation of the pigment molecules
    corecore