712 research outputs found

    Recent update of the RPLUS2D/3D codes

    Get PDF
    The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality

    Three-dimensional calculation of supersonic reacting flows using an LU scheme

    Get PDF
    A new three-dimensional numerical program incorporated with comprehensive real gas property models was developed to simulate supersonic reacting flows. The code employs an implicit finite volume, Lower-Upper (LU) time-marching method to solve the complete Navier-Stokes and species equations in a fully-coupled and very efficient manner. A chemistry model with nine species and eighteen reaction steps are adopted in the program to represent the chemical reaction of H2 and air. To demonstrate the capability of the program, flow fields of underexpanded hydrogen jets transversely injected into supersonic air stream inside the combustors of scramjets are calculated. Results clearly depict the flow characteristics, including the shock structure, separated flow regions around the injector, and the distribution of the combustion products

    Three-dimensional calculations of supersonic reacting flows using an LU scheme

    Get PDF
    A 3-D numerical program that incorporates comprehensive real gas property models was developed to simulate supersonic reacting flows. The code employs an implicit, finite volume, Lower-Upper (LU), time-marching method to solve the complete Navier-Stokes and species equations in a fully-coupled and efficient manner. A chemistry model with 9 species and 18 reaction steps is adopted in the program to represent the chemical reactions of H2 and air. To demonstrate the capability of the program, flow fields of underexpanded hydrogen jets transversely injected into the supersonic airstream inside the combustors of scramjets are calculated. Results clearly depict the flow characteristics, including the shock structure, the separated flow regions around the injector, and the distribution of the combustion products

    DHODH modulates transcriptional elongation in the neural crest and melanoma

    Get PDF
    Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation

    Chloroplast lipid transfer processes in \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e involving a TRIGALACTOSYLDIACYLGLYCEROL 2 (TGD2) ortholog

    Get PDF
    In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl-constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologs of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER-tochloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant. Includes Supplementary Material

    Gene set analysis for longitudinal gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations.</p> <p>Results</p> <p>We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified.</p> <p>Conclusions</p> <p>The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website <url>http://ndinbre.org/programs/bioinformatics.php</url>. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information) with accession number GSE6085.</p

    A search for charged massive long-lived particles

    Get PDF
    We report on a search for charged massive long-lived particles (CMLLPs), based on 5.2 fb−1^{-1} of integrated luminosity collected with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} collider. We search for events in which one or more particles are reconstructed as muons but have speed and ionization energy loss (dE/dx)(dE/dx) inconsistent with muons produced in beam collisions. CMLLPs are predicted in several theories of physics beyond the standard model. We exclude pair-produced long-lived gaugino-like charginos below 267 GeV and higgsino-like charginos below 217 GeV at 95% C.L., as well as long-lived scalar top quarks with mass below 285 GeV.Comment: submitted to Phys. Rev. Letter
    • 

    corecore