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We report on a search for charged massive long-lived particles (CMLLPs), based on 5.2 fb~! of
integrated luminosity collected with the DO detector at the Fermilab Tevatron pp collider. We search for
events in which one or more particles are reconstructed as muons but have speed and ionization energy
loss (dE/dx) inconsistent with muons produced in beam collisions. CMLLPs are predicted in several
theories of physics beyond the standard model. We exclude pair-produced long-lived gauginolike
charginos below 267 GeV and Higgsino-like charginos below 217 GeV at 95% C.L., as well as long-

lived scalar top quarks with mass below 285 GeV.

DOI: 10.1103/PhysRevLett.108.121802

We report on a search for massive particles that are
electrically charged and have a lifetime long enough to
escape the DO detector before decaying. Charged massive
long-lived particles are not present in the standard model
(SM) nor are their distinguishing characteristics (slow
speed, high dE/dx) relevant for most high energy physics
studies. Although the distinctive signature in itself pro-
vides sufficient motivation for a search, some recent ex-
tensions to the SM suggest that charged massive long-lived
particles (CMLLPs) exist and are not yet excluded by
cosmological limits [1,2]. Indeed, the standard model of
big bang nucleosynthesis (BBN) has difficulties in explain-
ing the observed lithium production. The existence of a
CMLLP that decays during or after the time of BBN could
resolve this disagreement [3].

We derive cross-section limits for CMLLPs and com-
pare them to theories of physics beyond the SM. In most
supersymmetric (SUSY) models the lightest SUSY particle
is assumed to be stable. Some SUSY models predict that

PACS numbers: 13.85.Rm, 14.80.Ly

the next-to-lightest supersymmetric particle (NLSP) can be
a CMLLP. In this Letter we explore models that include a
chargino as a NLSP. If its mass differs from the mass of the
lightest neutralino by less than about 150 MeV, it can have
a long lifetime [4,5]. This can occur in models with
anomaly mediated supersymmetry breaking (AMSB) or
in models that do not have gaugino mass unification.
There are two general cases, where the chargino is mostly
a Higgsino and where the chargino is mostly a gaugino,
which we treat separately in this Letter.

There are some SUSY models that predict a long-lived
scalar top quark (top squark) NLSP and a gravitino LSP.
These top squarks hadronize into charged or neutral had-
rons that are CMLLP candidates [6]. Hidden valley models
predict scenarios where the top squark acts like the LSP
and does not decay but also hadronizes into charged or
neutral hadrons (referred to as R hadrons) that escape the
detector [7,8]. In general, any SUSY scenario where the
top squark is the lightest colored particle (which will

121802-3
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happen in models without mass unification and heavy
gluinos) can have a CMLLP. Any colored CMLLP will
undergo hadronization and charge exchange during nuclear
interactions, which we discuss below.

This search utilizes data collected between 2006 and
2010 with the DO detector [9] at Fermilab’s 1.96 TeV pp
Tevatron Collider, and is based on 5.2 fb~! of integrated
luminosity. We reported previously [10] on a similar
1.1 fb~! study, searching for events with a pair of
CMLLPs, each with low speed. In addition to using the
larger data sample, the present search looks for one or more
CMLLP, rather than only for a pair, and characterizes
CMLLPs with high dE/dx in addition to slow speed.
Other searches for long-lived particles include those from
the CDF Collaboration [11,12], the CERN e*e™ Collider
LEP [13], and the CERN pp Collider LHC [14,15].

The DO detector [9] includes an inner tracker with two
components: an innermost silicon microstrip tracker
(SMT) and a scintillating fiber detector. We find a particle’s
dE/dx from the energy losses associated with its track in
the SMT. The tracker is embedded within a 1.9 T super-
conducting solenoidal magnet. Outside the solenoid is a
uranium or liquid-argon calorimeter surrounded by a muon
spectrometer, consisting of drift-tube planes on either side
of a 1.8 T iron toroid. There are three layers of the muon
detector: the A layer, located between the calorimeter and
the toroid, and the B and C layers, located outside the
toroid. Each layer includes scintillation counters which
serve to veto cosmic rays. Thus the muon system provides
multiple time measurements from which a particle’s speed
may be calculated.

Because we distinguish CMLLPs solely by their speed 8
and dE/dx, we must measure these values for each muon
candidate as accurately as possible. Muons from Z — uu
events studied throughout the data sample allow calibration
of the time measurement to better than 1 ns, with resolu-
tions between 2—4 ns, and to maintain the mean dE/dx
constant to within 2% over the data-taking period. From a
specific muon scintillation counter we calculate a particle’s
speed from the time recorded and the counter’s distance
from the production point, and we compute an overall
speed from the weighted average of these individual
speeds, using measured resolutions. The ionization-loss
data from the typically 8-10 individual energy deposits
in the SMT are combined using an algorithm that corrects
for track crossing angle and omits the largest deposit to
reduce the effect of the Landau tail. We calibrate the
dE/dx measurements by requiring that the dE/dx distri-
bution of muons from Z — pu events has a maximum
at 1. Figure 1 shows the distributions in B8 and dE/dx for
data and background events that pass the selection criteria
described below.

The selection of a candidate CMLLP occurs in several
steps. Because of the high pp collision rate, we employ a
three-level trigger system to reduce the event rate to the
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FIG. 1 (color online). Distributions of (a) speed B and (b)
dE/dx for data, background, and signal (gauginolike charginos
with a mass of 100 and 300 GeV) that pass the selection criteria.
The histograms have been normalized to have the same numbers
of events. We have adjusted the scale of the dE/dx measure-
ments so that the dE/dx of muons from Z — uu events peak at
1. All entries exceeding the range of the histogram are added to
the last bin.

200 Hz that can be recorded. The trigger system bases its
decisions on characteristics of the event, which for the
CMLLP candidates is the presence of a muon with a
high momentum transverse to the beam direction (pr). A
time window at the initial trigger level reduces triggers on
cosmic rays. This trigger gate lowers the trigger efficiency
by 10% for CMLLPs with a mass of 300 GeV (as they will
be slow and some will be out-of-time) and so contributes
significantly to the overall acceptance. We avoid a tighter
timing gate usually imposed at the second level of the
muon trigger by accepting an alternative requirement that
the muon have a matching track in the SMT.

In the standard DO event reconstruction CMLLPs would
appear as muons, which has been verified in detail using
simulations. Thus, we select events with at least one well
identified high p; muon. For a reliable 8 measurement, the
event must have scintillator hits in the A layer and either
the B or C layer. We require at least three hits in the SMT,
to obtain valid dE/dx data. For an optimal tracking and
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momentum measurement we require the muon to be cen-
tral, i.e., with a pseudorapidity [16] | | <1.6. To reject
muons from meson decays, we impose the isolation
requirement that the sum of the p; be less than 2.5 GeV

for all other tracks in a cone of radius R =

V(A®)? + (An)> <0.5. We also require that the total

transverse calorimeter energy in an annulus of radius 0.1 <
R < 0.4 about the muon direction be less than 2.5 GeV. A
requirement that the z coordinate of the muon track at the
location of closest approach to the beam axis be <40 cm
ensures that the particle passes through the SMT.

We impose further criteria to eliminate cosmic rays. To
select muons traveling outwards from the apparent inter-
action point, we require that its C-layer time be signifi-
cantly greater than its A-layer time. We require also that the
muon’s distance-of-closest approach to the beam line be
less than 0.02 cm. These criteria are also applied to addi-
tional muons in the event. For events with exactly two
muons we require that the absolute value of the difference
between each muon’s A-layer times be less than 10 ns. To
reject cosmic rays that appear as two back-to-back muons,
we require that Aa = |AO + A¢p — 27| > 0.05.

Events with a muon from a W boson decay, with mis-
measurements providing inaccurate values of the muon’s 8
and dE/dx, constitute a potentially large background. To
study rejection criteria for this background, we select data
with transverse mass M <200 GeV [17] to model the
data in the absence of signal [18]. We choose selection
criteria that minimize the number of events surviving from
this background sample compared to events from simula-
tions of the CMLLP signal. We require that events contain
at least one muon with pr > 60 GeV. From a separate
sample of muons from Z — pu decays we observe that
the association of a spurious scintillator hit with a muon
track can result in an anomalously low 3 value. We use an
algorithm that discards such hits through minimizing the
x?/d.o.f. for the B calculated from the different scintillator
layers. By comparing the effect on the background sample
with the effect on simulated signal, we choose to eliminate
events unless the minimized speed y?/d.o.f. < 2. Finally,
we compare the muon’s track direction measured by the
muon system with that measured in the central tracker, and
eliminate events with clearly mismatched tracks.

To simulate signal events, we generate CMLLP candi-
dates using PYTHIA [19], with specific models following
those described in Ref. [20]. The long-lived top squarks are
hadronized using [21]. Because the signature of the
CMLLP cascade decays is model dependent and difficult
to simulate accurately, we generate direct pair-production
of the CMLLPs, without including cascade decays. We use
the full DO detector GEANT [22] simulation to determine
the detector response for these samples (which include
overlaid data-based pp interactions). The results are ap-
plicable to models with pair-produced CMLLPs with simi-
lar kinematics.

The top squarks form charged or neutral R hadrons,
which may flip their charge as they pass through the
detector. In the simulation, approximately 60% of
R hadrons are charged following initial hadronization
[23]; i.e., 84% of the events will have at least one charged
R hadron. Further, R hadrons may flip their charge through
nuclear interactions as they pass through material. We
assume that R hadrons have a probability of 2/3 of being
charged after multiple nuclear interactions and anti—
R hadrons a probability of 1/2 of being charged, consistent
with the numbers of possible hadronic final states [24-26].
For this analysis we require the R hadron to be charged
before and after passing through the calorimeter, i.e., to be
detected both in the tracker and in the A layer, and to be
charged after the toroid, i.e., to be detected in the B or
C layers. The probability for at least one of the R hadrons
being detected is then 38%, or 84% if charge flipping does
not occur. We include these numbers as normalization
factors in the confidence-level analysis discussed below.

Our final selection criterion is that the candidate’s speed
B < 1. Thus, we describe the background by the 8 < 1 data
events with M < 200 GeV, and search for CMLLP can-
didates in 8 < 1 data with M; > 200 GeV. We normalize
the background and data samples in the 8> 1 region,
where the contribution of signal is negligible. The uncer-
tainties in the speed measurements depend on the particle’s
7, due to detector geometry. Since the distributions in 7 of
the muons in the M < 200 GeV sample differ from those
inthe My > 200 GeV sample, we use the signal-free region
to derive correction factors for the background sample that
match its 7 distribution to that of the data.

We utilize a boosted decision tree (BDT) [27] to dis-
criminate signal from background. The most discriminat-
ing variables are the CMLLP candidate’s 8 and dE/dx, but
we also include several related variables: the speed signifi-
cance, defined as (1 — B)/0 s, the corresponding number
of scintillator hits, the energy loss significance defined as
(dE/dx — 1)/ 0 yg /4y, and the number of SMT hits. For
each mass point in all three signal models we train the
BDT with the signal simulation and the background, and
then apply it to the data samples. Figure 1 shows the
distributions in B and in dE/dx for the data and back-
ground samples, as well as for two representative signals.

Systematic uncertainties are studied by applying varia-
tions to the background and signal samples and determin-
ing the deviations in the BDT output distributions. Two of
the systematic uncertainties affect the shape of the BDT
distribution of signal and their effect is taken into account
explicitly in the limit calculation: the uncertainty due to the
width of the level 1 trigger gate and the uncertainty
in the corrections to the simulation’s time resolution. By
examining the signal-like region of the BDT distributions,
we find that the maximum (average) uncertainty is 10%
(4%) for the trigger gate width, and 38% (7%) for the time
resolution correction. All other systematic uncertainties
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affect only the normalization of the BDT output. The
systematic uncertainties on the background are due to the
dE/dx modeling ( < 0.1%) and the background normal-
ization, from the specific values used for the 8 (7.2%) and
My requirements (2.2%). The systematic uncertainties on
the signal include muon identification (2%) and the inte-
grated luminosity (6.1%) [28]. The systematic uncertain-
ties associated with the corrections to the muon pr
resolution and to the dE/dx resolution, as well as the
choice of parton distribution function and factorization
scale, are all below 1%.

We obtain the 95% C.L. cross-section limits from the
BDT output distributions, constraining systematic uncer-
tainties to data in background dominated regions [29].
These limits are shown in Fig. 2, together with the next-
to-leading order (NLO) theoretical signal cross sections,
computed with PROSPINO [30]. Using the nominal (nominal
—1 standard deviation) values of the NLO cross section,
we are able to exclude gauginolike charginos below 267
(265) GeV and Higgsino-like charginos below 217
(214) GeV [31]. For top squarks, we assume a charge
survival probability of 38%, as discussed above, and ex-
clude masses below 285 (275) GeV. If charge flipping does
not occur, we obtain a higher mass limit, as indicated in
Fig. 2(c).

As shown in Fig. 2, the observed limit exceeds the
expected limit at various mass points by as much as 2.5
standard deviations, for all signals tested, due to the pres-
ence of the same few data events with high BDT discrimi-
nant values. This discrepancy reflects the excess of data
compared to background observed in Fig. 1 for the distri-
butions both in B (around 0.6) and dE/dx (around 2.8).
The kinematics of these events are consistent with a sta-
tistical fluctuation of the background.

In the mass range 200-300 GeV the observed cross-
section limits shown in Fig. 2 are of the order 0.01 pb for
both chargino signals and for the top squark signal with the
charge survival factor removed. Since we consider only
direct pair production and neglect the contribution of cas-
cade decays, the signal cross sections and the kinematics
mainly depend on the mass rather than on details of each
individual model [32]. Thus, we are able to place a cross-
section limit of order 0.01 pb, for directly produced
CMLLPs in this mass range.

In summary, we perform a search for charged, massive
long-lived particles using 5.2 tb™! of integrated luminosity
with the DO detector. We find no evidence of signal and set
95% C.L. cross-section upper limits of order 0.01 pb for
pair-produced CMLLPs of mass 200-300 GeV. At
95% C.L. we exclude pair-produced long-lived top squarks
with mass below 285 GeV, gauginolike charginos below
267 GeV, and Higgsino-like charginos below 217 GeV.
These are presently the most restrictive limits for chargino
CMLLPs, with about a factor of 5 improvement over the
previous DO cross-section limits [10].
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FIG. 2 (color online). Cross-section limits at 95% C.L. as a
function of mass for (a) gauginolike charginos, (b) Higgsino-like
charginos, and (c) top squarks. The top squark limits are dis-
played for the assumed charge flipping (charge survival
probability = 38%) and for no charge flipping (charge survival
probability = 84%).
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