27 research outputs found

    Bioinformatics mining for disease causing mutations

    Get PDF
    Humans and dogs share many common diseases, and it has been shown that the identification of mutations that cause disease in dogs can help unravel the genetic basis for a similar disease in humans. Mapping of traits and disease in dogs is not a new idea, but the sequencing of the whole dog genome, the creation of a dense SNP maps followed by the development of SNP arrays for high throughput genotyping has led to new facilitated mapping procedures. Each dog breed can be seen as a genetic isolate and certain breeds are often predisposed to specific diseases. Because of the genomic structure of the dog genome and the availability of new resources for disease mapping, the dog has been proposed to be especially advantageous for the mapping of complex disease that is difficult to map in human outbred populations. In this thesis, the aim has been to identify disease-causing mutations for three complex diseases in dogs with the presence of similar conditions in humans. Emphasis has been on bioinformatics analyses of genome-wide SNP and large re-sequencing data. In the dog breed Nova Scotia duck tolling retriever it is common with an immune-mediated disease complex that resembles human systemic lupus erythematosus (SLE). In paper I we used a two-stage genome-wide association mapping method and successfully located several susceptibility loci in dogs for this disease complex. In paper II we identified a mutation that had been under selection in the Shar-Pei breed, causing both a breed-defining wrinkled skin phenotype and an autoinflammatory fever disease. Because the locus had been under selection we used an alternative mapping approach, called homozygosity mapping to identify the locus, followed by re-sequencing using next generation sequencing technologies. In paper III we report the development of a web-based tool that facilitates analyses and extraction of essential information from the large amount of data produced by next generation sequencing projects. In paper IV we used across-breed genome-wide association mapping to identify risk factors for glioma, a type of malignant brain tumor fatal to both human and dogs. For the three diseases excellent candidate genes have been identified, and continued research might has the potential to lead to better treatment options and thus benefit both dogs and humans

    Localization of Canine Brachycephaly Using an Across Breed Mapping Approach

    Get PDF
    The domestic dog, Canis familiaris, exhibits profound phenotypic diversity and is an ideal model organism for the genetic dissection of simple and complex traits. However, some of the most interesting phenotypes are fixed in particular breeds and are therefore less tractable to genetic analysis using classical segregation-based mapping approaches. We implemented an across breed mapping approach using a moderately dense SNP array, a low number of animals and breeds carefully selected for the phenotypes of interest to identify genetic variants responsible for breed-defining characteristics. Using a modest number of affected (10–30) and control (20–60) samples from multiple breeds, the correct chromosomal assignment was identified in a proof of concept experiment using three previously defined loci; hyperuricosuria, white spotting and chondrodysplasia. Genome-wide association was performed in a similar manner for one of the most striking morphological traits in dogs: brachycephalic head type. Although candidate gene approaches based on comparable phenotypes in mice and humans have been utilized for this trait, the causative gene has remained elusive using this method. Samples from nine affected breeds and thirteen control breeds identified strong genome-wide associations for brachycephalic head type on Cfa 1. Two independent datasets identified the same genomic region. Levels of relative heterozygosity in the associated region indicate that it has been subjected to a selective sweep, consistent with it being a breed defining morphological characteristic. Genotyping additional dogs in the region confirmed the association. To date, the genetic structure of dog breeds has primarily been exploited for genome wide association for segregating traits. These results demonstrate that non-segregating traits under strong selection are equally tractable to genetic analysis using small sample numbers

    A Frameshift Mutation in Golden Retriever Dogs with Progressive Retinal Atrophy Endorses SLC4A3 as a Candidate Gene for Human Retinal Degenerations

    Get PDF
    Progressive retinal atrophy (PRA) in dogs, the canine equivalent of retinitis pigmentosa (RP) in humans, is characterised by vision loss due to degeneration of the photoreceptor cells in the retina, eventually leading to complete blindness. It affects more than 100 dog breeds, and is caused by numerous mutations. RP affects 1 in 4000 people in the Western world and 70% of causal mutations remain unknown. Canine diseases are natural models for the study of human diseases and are becoming increasingly useful for the development of therapies in humans. One variant, prcd-PRA, only accounts for a small proportion of PRA cases in the Golden Retriever (GR) breed. Using genome-wide association with 27 cases and 19 controls we identified a novel PRA locus on CFA37 (praw = 1.94×10−10, pgenome = 1.0×10−5), where a 644 kb region was homozygous within cases. A frameshift mutation was identified in a solute carrier anion exchanger gene (SLC4A3) located within this region. This variant was present in 56% of PRA cases and 87% of obligate carriers, and displayed a recessive mode of inheritance with full penetrance within those lineages in which it segregated. Allele frequencies are approximately 4% in the UK, 6% in Sweden and 2% in France, but the variant has not been found in GRs from the US. A large proportion of cases (approximately 44%) remain unexplained, indicating that PRA in this breed is genetically heterogeneous and caused by at least three mutations. SLC4A3 is important for retinal function and has not previously been associated with spontaneously occurring retinal degenerations in any other species, including humans

    A Novel Unstable Duplication Upstream of HAS2 Predisposes to a Breed-Defining Skin Phenotype and a Periodic Fever Syndrome in Chinese Shar-Pei Dogs

    Get PDF
    Hereditary periodic fever syndromes are characterized by recurrent episodes of fever and inflammation with no known pathogenic or autoimmune cause. In humans, several genes have been implicated in this group of diseases, but the majority of cases remain unexplained. A similar periodic fever syndrome is relatively frequent in the Chinese Shar-Pei breed of dogs. In the western world, Shar-Pei have been strongly selected for a distinctive thick and heavily folded skin. In this study, a mutation affecting both these traits was identified. Using genome-wide SNP analysis of Shar-Pei and other breeds, the strongest signal of a breed-specific selective sweep was located on chromosome 13. The same region also harbored the strongest genome-wide association (GWA) signal for susceptibility to the periodic fever syndrome (praw = 2.3×10−6, pgenome = 0.01). Dense targeted resequencing revealed two partially overlapping duplications, 14.3 Kb and 16.1 Kb in size, unique to Shar-Pei and upstream of the Hyaluronic Acid Synthase 2 (HAS2) gene. HAS2 encodes the rate-limiting enzyme synthesizing hyaluronan (HA), a major component of the skin. HA is up-regulated and accumulates in the thickened skin of Shar-Pei. A high copy number of the 16.1 Kb duplication was associated with an increased expression of HAS2 as well as the periodic fever syndrome (p<0.0001). When fragmented, HA can act as a trigger of the innate immune system and stimulate sterile fever and inflammation. The strong selection for the skin phenotype therefore appears to enrich for a pleiotropic mutation predisposing these dogs to a periodic fever syndrome. The identification of HA as a major risk factor for this canine disease raises the potential of this glycosaminoglycan as a risk factor for human periodic fevers and as an important driver of chronic inflammation

    Using combined methods to reveal the dynamic organization of protein networks

    No full text
    Proteins combine in various ways to execute different essential functions. Cellular processes are enormously complex and it is a great challenge to explain the underlying organization. Various methods have been applied in attempt to reveal the organization of the cell. Gene expression analysis uses the mRNA levels in the cell to predict which proteins are present in the cell simultaneously. This method is useful but also known to sometimes fail. Proteins that are known to be functionally related do not always show a significant correlation in gene expression. This fact might be explained by the dynamic organization of the proteome. Proteins can have diverse functions and might interact with some proteins only during a few time points, which would probably not result in significant correlation in their gene expression. In this work we tried to address this problem by combining gene expression data with data for physical interactions between proteins. We used a method for modular decomposition introduced by Gagneur et al. (2004) that aims to reveal the logical organization in protein-protein networks. We extended the interpretation of the modular decomposition to localize the dynamics in the protein organization. We found evidence that protein-interactions supported by gene expression data are very likely to be related in function and thus can be used to predict function for unknown proteins. We also identified negative correlation in gene expression as an overlooked area. Several hypotheses were generated using combination of these methods. Some could be verified by the literature and others might shed light on new pathways after additional experimental testing

    Serum neutrophil gelatinase-associated lipocalin (NGAL) concentration is independently associated with mortality in patients with acute coronary syndrome

    Get PDF
    Background - Circulating neutrophil gelatinase-associated lipocalin (NGAL) concentration increases in cardiovascular disease, but the long-term prognostic value of NGAL concentration has not been evaluated in acute coronary syndrome (ACS). We examined the association between NGAL concentration and prognosis in patients with ACS after non-ST-elevation myocardial infarction (NSTEMI) or STEMI. Methods and results - NGAL concentration was measured in blood from 1121 consecutive ACS patients (30% women, mean age 65 years) on the first morning after admission. After adjustment for 14 variables, NGAL concentration predicted long-term (median 167 months) mortality (hazard ratio [HR] 1.33, 95% confidence interval [CI] 1.10–1.61, P = 0.003) for quartile (q) 4 of NGAL concentration. NGAL concentrations also predicted long-term mortality (HR = 1.63, 95% CI 1.31–2.03, P P P = 0.100). In all patients, the combination of NGAL concentration and GRACE score yielded an HR of 5.56 (95% CI 4.37–7.06, P  Conclusion - NGAL concentration in ACS is associated with long-term prognosis after adjustment for clinical confounders. Measuring circulating NGAL concentration may help to identify patients—particularly those with NSTEMI—needing closer follow-up after ACS

    Whole-Exome Sequencing in 22 Young Ischemic Stroke Patients With Familial Clustering of Stroke

    No full text
    Backgrounds and Purpose- Although new methods for genetic analyses are rapidly evolving, there are currently knowledge gaps in how to detect Mendelian forms of stroke. Methods- We performed whole-exome sequencing in 22 probands, under 56 years at their first ischemic stroke episode, from multi-incident stroke families. With the use of a comprehensive stroke-gene panel, we searched for variants in stroke-related genes. The probands' clinical stroke subtype was related to clinical characteristics previously associated with pathogenic variants in these genes. Relatives were genotyped in 7 families to evaluate stroke-gene variants of unknown significance. In 2 larger families with embolic stroke of unknown source, whole-exome sequencing was performed in additional members to examine the possibility of identifying new stroke genes. Results- Six of 22 probands carried pathogenic or possibly pathogenic variants in genes reported to be associated with their stroke subtype. A known pathogenic variant in NOTCH3 and a possibly pathogenic variant in ACAD9 gene were identified. A novel JAK2:c.3188G>A (p.Arg1063His) mutation was seen in a proband with embolic stroke of undetermined source and prothrombotic status. However, penetrance in the family was incomplete. COL4A2:c.3368A>G (p.Glu1123Gly) was detected in 2 probands but did not cosegregate with the disease in their families. Whole-exome sequencing in multiple members of 2 pedigrees with embolic stroke of undetermined source revealed possibly pathogenic variants in genes not previously associated with stroke, GPR142:c.148C>G (p.Leu50Val), and PTPRN2:c.2416A>G (p.Ile806Val); LRRC1 c.808A>G (p.Ile270Val), SLC7A10c.1294dupG (p.Val432fs), IKBKB: c.1070C>T (p.Ala357Val), and OXGR1 c.392G>A (p.Arg131His), respectively. Conclusions- Screening with whole-exome sequencing using a comprehensive stroke-gene panel may identify rare monogenic forms of stroke, but careful evaluation of clinical characteristics and potential pathogenicity of novel variants remain important. In our study, the majority of individuals with familial aggregation of stroke lacked any identified genetic causes

    A new <i>GTF2I-BRAF</i> fusion mediating MAPK pathway activation in pilocytic astrocytoma

    No full text
    <div><p>Pilocytic astrocytoma (PA) is the most common pediatric brain tumor. A recurrent feature of PA is deregulation of the mitogen activated protein kinase (MAPK) pathway most often through <i>KIAA1549-BRAF</i> fusion, but also by other <i>BRAF</i>- or <i>RAF1</i>-gene fusions and point mutations (<i>e</i>.<i>g</i>. <i>BRAF</i>V600E). These features may serve as diagnostic and prognostic markers, and also facilitate development of targeted therapy. The aims of this study were to characterize the genetic alterations underlying the development of PA in six tumor cases, and evaluate methods for fusion oncogene detection. Using a combined analysis of RNA sequencing and copy number variation data we identified a new <i>BRAF</i> fusion involving the 5’ gene fusion partner <i>GTF2I</i> (7q11.23), not previously described in PA. The new <i>GTF2I-BRAF</i> 19–10 fusion was found in one case, while the other five cases harbored the frequent <i>KIAA1549-BRAF</i> 16–9 fusion gene. Similar to other <i>BRAF</i> fusions, the <i>GTF2I-BRAF</i> fusion retains an intact <i>BRAF</i> kinase domain while the inhibitory N-terminal domain is lost. Functional studies on <i>GTF2I-BRAF</i> showed elevated MAPK pathway activation compared to <i>BRAF</i><sup><i>WT</i></sup>. Comparing fusion detection methods, we found Fluorescence in situ hybridization with <i>BRAF</i> break apart probe as the most sensitive method for detection of different <i>BRAF</i> rearrangements (<i>GTF2I-BRAF</i> and <i>KIAA1549-BRAF</i>). Our finding of a new <i>BRAF</i> fusion in PA further emphasis the important role of B-Raf in tumorigenesis of these tumor types. Moreover, the consistency and growing list of <i>BRAF/RAF</i> gene fusions suggests these rearrangements to be informative tumor markers in molecular diagnostics, which could guide future treatment strategies.</p></div
    corecore