576 research outputs found

    Isolation and Characterization of Eight Polymorphic Microsatellites for the Spotted Spiny Lobster, Panulirus guttatus

    Get PDF
    Microsatellite sequences were isolated from enriched genomic libraries of the spotted spiny lobster, Panulirus guttatus using 454 pyrosequencing. Twenty-nine previously developed polymerase chain reaction primer pairs of Panulirus argus microsatellite loci were also tested for cross-species amplification in Panulirus guttatus. In total, eight consistently amplifying, and polymorphic loci were characterized for 57 individuals collected in the Florida Keys and Bermuda. The number of alleles per locus ranged from 8 to 20 and observed heterozygosities ranged from 0.409 to 0.958. Significant deviations from Hardy–Weinberg equilibrium were found in one locus from Florida and three loci from Bermuda. Quality control testing indicated that all loci were easy to score, highly polymorphic and showed no evidence of linkage disequilibrium. Null alleles were detected in three loci with moderate frequencies ranging from (20% to 22%). These eight microsatellites provide novel molecular markers for future conservation genetics research of P. guttatus

    A Chandra Observation of Supernova Remnant G350.1-0.3 and Its Central Compact Object

    Full text link
    We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3. The high resolution X-ray data reveal previously unresolved filamentary structures and allow us to perform detailed spectroscopy in the diffuse regions of this SNR. Spectral analysis demonstrates that the region of brightest emission is dominated by hot, metal-rich ejecta while the ambient material along the perimeter of the ejecta region and throughout the remnant's western half is mostly low-temperature, shocked interstellar/circumstellar medium (ISM/CSM) with solar-type composition. The data reveal that the emission extends far to the west of the ejecta region and imply a lower limit of 6.6 pc on the diameter of the source (at a distance of 4.5 kpc). We show that G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and calculate an age of 600-1200 years. The derived relationship between the shock velocity and the electron/proton temperature ratio is found to be entirely consistent with that of other SNRs. We perform spectral fits on the X-ray source XMMU J172054.5-372652, a candidate central compact object (CCO), and find that its spectral properties fall within the typical range of other CCOs. We also present archival 24 um data of G350.1-0.3 taken with the Spitzer Space Telescope during the MIPSGAL galactic survey and find that the infrared and X-ray morphologies are well-correlated. These results help to explain this remnant's peculiar asymmetries and shed new light on its dynamics and evolution

    An adjustable law of motion for relativistic spherical shells

    Full text link
    A classical and a relativistic law of motion for an advancing shell are deduced applying the thin layer approximation. A new parameter connected with the quantity of absorbed matter in the expansion is introduced; this allows of matching theory and observation.Comment: 15 pages, 10 figures and article in press; Central European Journal of Physics 201

    Turbulent Mixing in the Interstellar Medium -- an application for Lagrangian Tracer Particles

    Full text link
    We use 3-dimensional numerical simulations of self-gravitating compressible turbulent gas in combination with Lagrangian tracer particles to investigate the mixing process of molecular hydrogen (H2) in interstellar clouds. Tracer particles are used to represent shock-compressed dense gas, which is associated with H2. We deposit tracer particles in regions of density contrast in excess of ten times the mean density. Following their trajectories and using probability distribution functions, we find an upper limit for the mixing timescale of H2, which is of order 0.3 Myr. This is significantly smaller than the lifetime of molecular clouds, which demonstrates the importance of the turbulent mixing of H2 as a preliminary stage to star formation.Comment: 10 pages, 5 figures, conference proceedings "Turbulent Mixing and Beyond 2007

    The Nucleosynthetic Imprint of 15-40 Solar Mass Primordial Supernovae on Metal-Poor Stars

    Full text link
    The inclusion of rotationally-induced mixing in stellar evolution can alter the structure and composition of presupernova stars. We survey the effects of progenitor rotation on nucleosynthetic yields in Population III and II supernovae using the new adaptive mesh refinement (AMR) code CASTRO. We examine spherical explosions in 15, 25 and 40 solar mass stars at Z = 0 and 10^-4 solar metallicity with three explosion energies and two rotation rates. Rotation in the Z = 0 models resulted in primary nitrogen production and a stronger hydrogen burning shell which led all models to die as red supergiants. On the other hand, the Z=10^-4 solar metallicity models that included rotation ended their lives as compact blue stars. Because of their extended structure, the hydrodynamics favors more mixing and less fallback in the metal free stars than the Z = 10^-4 models. As expected, higher energy explosions produce more enrichment and less fallback than do lower energy explosions, and less massive stars produce more enrichment and leave behind smaller remnants than do more massive stars. We compare our nucleosynthetic yields to the chemical abundances in the three most iron-poor stars yet found and reproduce the abundance pattern of one, HE 0557-4840, with a zero metallicity 15 solar mass, 2.4 x 10^51 erg supernova. A Salpeter IMF averaged integration of our yields for Z=0 models with explosion energies of 2.4x10^51 ergs or less is in good agreement with the abundances observed in larger samples of extremely metal-poor stars, provided 15 solar mass stars are included. Since the abundance patterns of extremely metal-poor stars likely arise from a representative sample of progenitors, our yields suggest that low-mass supernovae contributed the bulk of the metals to the early universe.Comment: 16 pages, 11 figures; submitted to Ap

    Hydrodynamic Simulation of Supernova Remnants Including Efficient Particle Acceleration

    Full text link
    A number of supernova remnants (SNRs) show nonthermal X-rays assumed to be synchrotron emission from shock accelerated TeV electrons. The existence of these TeV electrons strongly suggests that the shocks in SNRs are sources of galactic cosmic rays (CRs). In addition, there is convincing evidence from broad-band studies of individual SNRs and elsewhere that the particle acceleration process in SNRs can be efficient and nonlinear. If SNR shocks are efficient particle accelerators, the production of CRs impacts the thermal properties of the shock heated, X-ray emitting gas and the SNR evolution. We report on a technique that couples nonlinear diffusive shock acceleration, including the backreaction of the accelerated particles on the structure of the forward and reverse shocks, with a hydrodynamic simulation of SNR evolution. Compared to models which ignore CRs, the most important hydrodynamical effects of placing a significant fraction of shock energy into CRs are larger shock compression ratios and lower temperatures in the shocked gas. We compare our results, which use an approximate description of the acceleration process, with a more complete model where the full CR transport equations are solved (i.e., Berezhko et al., 2002), and find excellent agreement for the CR spectrum summed over the SNR lifetime and the evolving shock compression ratio. The importance of the coupling between particle acceleration and SNR dynamics for the interpretation of broad-band continuum and thermal X-ray observations is discussed.Comment: Accepted for publication in A & A; 14 pages including 11 figure

    Star Formation in Disk Galaxies. I. Formation and Evolution of Giant Molecular Clouds via Gravitational Instability and Cloud Collisions

    Full text link
    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of 3D adaptive mesh refinement (AMR) numerical simulations that follow both the global evolution on scales of ~20kpc and resolve down to scales ~<10pc with a multiphase atomic interstellar medium (ISM). In this first study, we omit star formation and feedback, and focus on the processes of gravitational instability and cloud collisions and interactions. We define clouds as regions with n_H>=100cm^-3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ~140Myr a large fraction of the gas in the disk has fragmented into clouds with masses ~10^6 Msun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi steady state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ~1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.Comment: 21 pages ApJ format, including 16 figures, accepted to Ap

    Star Forming Dense Cloud Cores in the TeV {\gamma}-ray SNR RX J1713.7-3946

    Full text link
    RX J1713.7-3946 is one of the TeV {\gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at ~1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the 12CO(J=2-1) and 13CO(J=2-1) transitions at angular resolution of 90". The most intense core in 13CO, peak C, was also mapped in the 12CO(J=4-3) transition at angular resolution of 38". Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r^{-2.2±\pm0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to the enhanced synchrotron X rays around dense cores.Comment: 22 pages, 7 figures, to accepted in The Astrophysical Journal. A full color version with higher resolution figures is available at http://www.a.phys.nagoya-u.ac.jp/~sano/ApJ10/ms_sano.pd

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres
    • …
    corecore