448 research outputs found
Development of a machine vision system for a real time precision sprayer
In the context of precision agriculture, we have developed a machine vision system for a real time precision sprayer. From a monochrome CCD camera located in front of the tractor, the discrimination between crop and weeds is obtained with image processing based on spatial information using a Gabor filter.This method allows to detect the periodic signals from the non-periodic ones, and enables us to enhance the crop rows, whereas weeds have a patchy distribution. Thus, weed patches were clearly identified by a blob-coloring method. Finally, we use a pinhole model to transform the weed patch coordinates image in world coordinates in order to activate the right electro-pneumatic valve of the sprayer at the right moment
Coarse to fine : toward an intelligent 3D acquisition system
International audienceThe 3D acquisition-compression-processing chain is , most of the time , sequenced into independent stages. As resulting , a large amount of 3D points are acquired whatever the geometry of the object and the processing to be done in further steps. It appears , particularly in mechanical part 3D modeling and in CAD , that the acquisition of such an amount of data is not always mandatory. We propose a method aiming at minimizing the number of 3D points to be acquired with respect to the local geometry of the part and therefore to compress the cloud of points during the acquisition stage. The method we propose is based on a new coarse to fine approach in which from a coarse set of 2D points associated to the local normals the 3D object model is segmented into a combination of primitives. The obtained model is enriched where it is needed with new points and a new primitive extraction stage is performed in the refined regions. This is done until a given precision of the reconstructed object is attained. It is noticeable that contrary to other studies we do not work on a meshed model but directly on the data provided by the scanning device
A coarse to fine 3D acquisition system
International audienceThe 3D chain (acquisition-processing-compression) is , most of the time , sequenced into several steps. Such approaches result into an one-dense acquisition of 3D points. In large scope of applications , the first processing step consists in simplifying the data. In this paper , we propose a coarse to fine acquisition system which permits to obtain simplified data directly from the acquisition. By calculating some complementary information from 2D images , such as 3D normals , multiple homogeneous regions will be segmented and affected to a given primitive class. Contrary to other studies , the whole process is not based on a mesh. The obtained model is simplified directly from the 2D data acquired by a 3D scanner
Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique
For the past two decades, the need for three-dimensional (3-D) scanning of industrial objects has increased significantly and many experimental techniques and commercial solutions have been proposed. However, difficulties remain for the acquisition of optically non-cooperative surfaces, such as transparent or specular surfaces. To address highly reflective metallic surfaces, we propose the extension of a technique that was originally dedicated to glass objects. In contrast to conventional active triangulation techniques that measure the reflection of visible radiation, we measure the thermal emission of a surface, which is locally heated by a laser source. Considering the thermophysical properties of metals, we present a simulation model of heat exchanges that are induced by the process, helping to demonstrate its feasibility on specular metallic surfaces and predicting the settings of the system. With our experimental device, we have validated the theoretical modeling and computed some 3-D point clouds from specular surfaces of various geometries. Furthermore, a comparison of our results with those of a conventional system on specular and diffuse parts will highlight that the accuracy of the measurement no longer depends on the roughness of the surface
A 3D scanner for transparent glass
Many practical tasks in industry, such as automatic inspection or robot vision, often require the scanning of three-dimensional shapes by use of non-contact techniques. However, few methods have been proposed to measure three-dimensional shapes of transparent objects because of the difficulty of dealing with transparency and specularity of the surface. This paper presents a 3D scanner for transparent glass objects based on Scanning From Heating (SFH), a new method that makes use of local surface heating and thermal imaging
Scanning from heating: 3D shape estimation of transparent objects from local surface heating
Today, with quality becoming increasingly important, each product requires three-dimensional in-line quality control. On the other hand, the 3D reconstruction of transparent objects is a very difficult problem in computer vision due to transparency and specularity of the surface. This paper proposes a new method, called Scanning From Heating (SFH), to determine the surface shape of transparent objects using laser surface heating and thermal imaging. Furthermore, the application to transparent glass is discussed and results on different surface shapes are presented
CCN proteins as potential actionable targets in scleroderma
Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin features, which give their name to the disease and are considered as diagnostic as well as prognostic markers, have not been thoroughly investigated in terms of therapeutic targets. CCN proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1â 2â 3 as CCN4â 5â 6) are a family of secreted matricellular proteins implicated in major cellular processes such as cell growth, migration, differentiation. They have already been implicated in key pathophysiological processes of SSc, namely fibrosis, vasculopathy and inflammation. In this review, we discuss the possible implication of CCN proteins in SSc pathogenesis, with a special focus on skin features, and identify the potential actionable CCN targets.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147777/1/exd13806.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147777/2/exd13806_am.pd
Les "vagues voyageuses" du campagnol terrestre en Franche-Comté
Dans les prairies d'altitude, les dégâts provoqués par le campagnol terrestre posent un problème économique et agricole récurrent depuis le début des années 70. Dans la lutte contre cette peste agricole, l'utilisation croissante d'un anticoagulant rodenticide, la bromadiolone, a en plus considérablement augmenté la mortalité de nombreuses espèces animales, notamment de rapaces (légalement protégés), de renards et de sangliers. Dès le début du siècle, les recherches sur les variations de populations de rongeurs ont montré que la densité de certaines espèces de petits mammifères (lemmings, campagnols, etc.) fluctue de manière plus ou moins cyclique
Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease
International audienceABSTRACT: INTRODUCTION: T cell abnormalities have been associated with the pathogenesis of systemic sclerosis (SSc). Recently, besides T helper (Th)17 cells the Th22 subset has been identified in humans. Our purpose was to investigate the pattern of cytokines produced and chemokine-receptors expressed by peripheral blood (PB) Th cells in SSc and healthy donors (HD) focusing on cells producing interleukin (IL)-17 and IL-22 and to identify specific clinical associations. METHODS: Clinical data and peripheral blood were collected in 33 SSc individuals and 29 HD. IL-17A, IL-22, interferon gamma (IFN-gamma, IL-4 production, the chemokine receptors CCR4, CCR6, CCR10, CXCR3 expression and the CD161 Th17 cell marker were assessed by multiparametric flow cytometry in PB CD4+ T cells. Intracellular cytokine accumulation was further investigated in CD4+ T cells expanded in vitro for 7 days. RESULTS: The frequency of Th22, Th17, Th2 but not Th1 cells was significantly increased in SSc individuals compared to HD. The percentage of CD161+CD4+ T cells was increased in SSc and correlated with the percentage of IL-17A producing cells. Moreover, the expression of the skin- and lung-homing chemokine receptor CCR6 correlated with the frequency of IL-22 and IL-17A-producing cells in SSc but not in HD. Finally, SSc interstitial lung disease (ILD) was strongly associated with higher numbers of IL-22 and, to a lesser extent, IL-17A-producing cells. CONCLUSIONS: IL-22 and IL-17A-producing T cells with skin- and lung-homing capabilities are characteristically increased in SSc. These findings support the hypothesis that Th22 in addition to Th17 cells may be involved in pathological processes leading to SSc. While the association between IL-22 producing cells and ILD needs to be assessed in larger cohorts of patients, the increased frequency of Th22 cells appears to be a useful novel biomarker in SSc
- …