1,029 research outputs found
Calling on the cancer sleuths: how cell biologists will do the detective legwork of the postcancer genome era.
PTEN Regulation of Local and Long-Range Connections in Mouse Auditory Cortex
Autism spectrum disorders (ASDs) are highly heritable developmental disorders caused by a heterogeneous collection of genetic lesions. Here we use a mouse model to study the effect on cortical connectivity of disrupting the ASD candidate gene PTEN (phosphatase and tensin homolog deleted on chromosome 10). Through Cre-mediated recombination, we conditionally knocked out PTEN expression in a subset of auditory cortical neurons. Analysis of long-range connectivity using channelrhodopsin-2 revealed that the strength of synaptic inputs from both the contralateral auditory cortex and from the thalamus onto PTEN-cko neurons was enhanced compared with nearby neurons with normal PTEN expression. Laser-scanning photostimulation showed that local inputs onto PTEN-cko neurons in the auditory cortex were similarly enhanced. The hyperconnectivity caused by PTEN-cko could be blocked by rapamycin, a specific inhibitor of the PTEN downstream molecule mammalian target of rapamycin complex 1. Together, our results suggest that local and long-range hyperconnectivity may constitute a physiological basis for the effects of mutations in PTEN and possibly other ASD candidate genes
Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output
Growth factor receptor levels are aberrantly high in diverse cancers, driving the proliferation and survival of tumor cells. Understanding the molecular basis for this aberrant elevation has profound clinical implications. Here we show that the pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) suppresses receptor tyrosine kinase (RTK) signaling output by a previously unidentified epigenetic mechanism unrelated to its previously described function as the hydrophobic motif phosphatase for the protein kinase AKT, protein kinase C, and S6 kinase. Specifically, we show that nuclear-localized PHLPP suppresses histone phosphorylation and acetylation, in turn suppressing the transcription of diverse growth factor receptors, including the EGF receptor. These data uncover a much broader role for PHLPP in regulation of growth factor signaling beyond its direct inactivation of AKT: By suppressing RTK levels, PHLPP dampens the downstream signaling output of two major oncogenic pathways, the PI3 kinase/AKT and the Rat sarcoma (RAS)/ERK pathways. Our data are consistent with a model in which PHLPP modifies the histone code to control the transcription of RTKs
Quaternary structure of Artemia haemoglobin II: analysis of T and C polymer alignment and interpolymer interface
BACKGROUND: The brine shrimp Artemia expresses four different types of haemoglobin subunits namely C1, C2, T1 and T2. Two of these four subunits dimerize in different combinations to produce the three isoforms of the heterodimeric Artemia haemoglobin: HbI (C1 and C2), HbII (C1 and T2) and HbIII (T1 and T2). Previous biochemical, biophysical and computational analyses demonstrate that the T and C polymers are rings of nine concatenated globin domains, which are covalently joined by interdomain linkers. Two such rings stacked coaxially give the functional molecule. This research aimed to construct a quaternary structural model of Artemia HbII that shows the interpolymer interface and domain-domain alignment, using the MS3D (mass spectrometry for three dimensional analysis) approach. This involved introducing chemical crosslinks between the two polymers, cleaving with trypsin and analyzing the resulting products by mass spectrometry. This was followed by computational analysis of the mass spectrometry data using the program SearchXlinks to identify putatively crosslinked peptides. RESULTS: Six putative EGS (ethylene glycol bis [succinimidylsuccinate]) crosslinked tryptic peptides were identified. All of them support a model in which the EF helices of all domains are in contact along the interpolymer surface, and Domain 1 of the T-polymer aligns with Domain 1 of the C-polymer. Any two adjacent interpolymer domain pairs contact through the early Helix H and early Helix A. The orientation of domains is different from the subunit proposed model proposed previously by this group. Crosslinking with GMBS (N- [γ-maleimidobutyryloxy]succinimide ester) was also performed, and the results show good agreement with this model. CONCLUSION: The interpolymer EF-contact allows the hydrophobic E and F helices to be buried in the interface and therefore allow the complex to solubilize readily to facilitate efficient oxygen transport. Furthermore the EF-contact is a common contact in cooperative haemoglobins and thus the model is consistent with the cooperative behaviour of Artemia HbII
Projective Hilbert space structures at exceptional points
A non-Hermitian complex symmetric 2x2 matrix toy model is used to study
projective Hilbert space structures in the vicinity of exceptional points
(EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are
Puiseux-expanded in terms of the root vectors at the EP. It is shown that the
apparent contradiction between the two incompatible normalization conditions
with finite and singular behavior in the EP-limit can be resolved by
projectively extending the original Hilbert space. The complementary
normalization conditions correspond then to two different affine charts of this
enlarged projective Hilbert space. Geometric phase and phase jump behavior are
analyzed and the usefulness of the phase rigidity as measure for the distance
to EP configurations is demonstrated. Finally, EP-related aspects of
PT-symmetrically extended Quantum Mechanics are discussed and a conjecture
concerning the quantum brachistochrone problem is formulated.Comment: 20 pages; discussion extended, refs added; bug correcte
Developing a disease prevention strategy in the Caribbean: the importance of assessing animal health-related risks at regional level
En 2009, le réseau CaribVET a réalisé une enquête au sein des Services vétérinaires des pays et territoires de la Caraïbe afin d'évaluer les perceptions associées à l'évaluation du risque et d'identifier les principales maladies exotiques d'intérêt pour la région ainsi que leurs modalités d'introduction. L'étude a montré que l'introduction d'animaux vivants était considérée comme la voie d'accès la plus probable des agents pathogènes exotiques affectant les animaux, suivie de l'introduction non contrôlée de produits d'origine animale par les passagers des navires. Ces résultats ont été utilisés pour définir une stratégie d'évaluation des risques pour la santé animale qui tienne compte de l'importance des échanges intra-régionaux. (Résumé d'auteur
Improved reperfusion following alternative surgical approach for experimental stroke in mice
Background: Following ischemic stroke, recanalisation and restoration of blood flow to the affected area of the brain is critical and directly correlates with patient recovery. In vivo models of ischemic stroke show high variability in outcomes which may be due to variability in reperfusion. We previously reported that a surgical refinement in the middle cerebral artery occlusion (MCAO) model of stroke, via repair of the common carotid artery (CCA), removes the reliance on the Circle of Willis for reperfusion and reduced infarct variability. Here we further assess this refined surgical approach on reperfusion characteristics following transient MCAO in mice.Methods: Mice underwent 60 min of MCAO, followed by either CCA repair or ligation at reperfusion. All mice underwent laser speckle contrast imaging at baseline, 24h and 48h post-MCAO.Results: CCA ligation reduced cerebral perfusion in the ipsilateral hemisphere compared to baseline (102.3 ± 4.57 %) at 24h (85.13 ± 16.09 %; P [less than] 0.01) and 48h (75.04 ± 12.954 %; P [less than] 0.001) post-MCAO. Repair of the CCA returned perfusion to baseline (94.152 ± 2.44 %) levels and perfusion was significantly improved compared to CCA ligation at both 24h (102.83 ± 8.41 %; P [less than] 0.05) and 48h (102.13 ± 9.34 %; P [less than] 0.001) post-MCAO. Conclusions: Our findings show CCA repair, an alternative surgical approach for MCAO, results in improved ischemic hemisphere perfusion during the acute phase
Phosphatase and tensin homologue: a therapeutic target for SMA
Spinal muscular atrophy (SMA) is one of the most common juvenile neurodegenerative diseases, which can be associated with child mortality. SMA is caused by a mutation of ubiquitously expressed gene, Survival Motor Neuron1 (SMN1), leading to reduced SMN protein and the motor neuron death. The disease is incurable and the only therapeutic strategy to follow is to improve the expression of SMN protein levels in motor neurons. Significant numbers of motor neurons in SMA mice and SMA cultures are caspase positive with condensed nuclei, suggesting that these cells are prone to a process of cell death called apoptosis. Searching for other potential molecules or signaling pathways that are neuroprotective for central nervous system (CNS) insults is essential for widening the scope of developmental medicine. PTEN, a Phosphatase and Tensin homologue, is a tumor suppressor, which is widely expressed in CNS. PTEN depletion activates anti-apoptotic factors and it is evident that the pathway plays an important protective role in many neurodegenerative disorders. It functions as a negative regulator of PIP3/AKT pathway and thereby modulates its downstream cellular functions through lipid phosphatase activity. Moreover, previous reports from our group demonstrated that, PTEN depletion using viral vector delivery system in SMN delta7 mice reduces disease pathology, with significant rescue on survival rate and the body weight of the SMA mice. Thus knockdown/depletion/mutation of PTEN and manipulation of PTEN medicated Akt/PKB signaling pathway may represent an important therapeutic strategy to promote motor neuron survival in SMA
Longitudinal Multimodal fMRI to Investigate Neurovascular Changes in Spontaneously Hypertensive Rats
Hypertension is an important risk factor for age‐related cognitive decline and neuronal pathologies. Studies have shown a correlation between hypertension, disruption in neurovascular coupling and cerebral autoregulation, and cognitive decline. However, the mechanisms behind this are unclear. To further understand this, it is advantageous to study neurovascular coupling as hypertension progresses in a rodent model. Here, we use a longitudinal functional MRI (fMRI) protocol to assess the impact of hypertension on neurovascular coupling in spontaneously hypertensive rats (SHRs). Eight female SHRs were studied at 2, 4, and 6 months of age, as hypertension progressed. Under an IV infusion of propofol, animals underwent fMRI, functional MR spectroscopy, and cerebral blood flow (CBF) quantification to study changes in neurovascular coupling over time. Blood pressure significantly increased at 4 and 6 months (P < .0001). CBF significantly increased at 4 months old (P < .05), in the acute stage of hypertension. The size of the active region decreased significantly at 6 months old (P < .05). Change in glutamate signal during activation, and N‐acetyl‐aspartate (NAA) signal, remained constant. This study shows that, while cerebral autoregulation is impaired in acute hypertension, the blood oxygenation‐level‐dependent (BOLD) response remains unaltered until later stages. At this stage, the consistent NAA and glutamate signals show that neuronal death has not occurred, and that neuronal activity is not affected at this stage. This suggests that neuronal activity and viability is not lost until much later, and changes observed here in BOLD activity are due to vascular effects
A longitudinal, multi-parametric functional MRI study to determine age-related changes in the rodent brain
As the population ages, the incidence of age-related neurological diseases and cognitive decline increases. To further understand disease-related changes in brain function it is advantageous to examine brain activity changes in healthy aging rodent models to permit mechanistic investigation. Here, we examine the suitability, in rodents, of using a novel, minimally invasive anaesthesia protocol in combination with a functional MRI protocol to assess alterations in neuronal activity due to physiological aging. 11 Wistar Han female rats were studied at 7, 9, 12, 15 and 18 months of age. Under an intravenous infusion of propofol, animals underwent functional magnetic resonance imaging (fMRI) and functional magnetic resonance spectroscopy (fMRS) with forepaw stimulation to quantify neurotransmitter activity, and resting cerebral blood flow (CBF) quantification using arterial spin labelling (ASL) to study changes in neurovascular coupling over time. Animals showed a significant decrease in size of the active region with age (P [less than] 0.05). fMRS results showed a significant decrease in glutamate change with stimulation (?Glu) with age (P < 0.05), and ?Glu became negative from 12 months onwards. Global CBF remained constant for the duration of the study. This study shows age related changes in the blood oxygen level dependent (BOLD) response in rodents that correlate with those seen in humans. The results also suggest that a reduction in synaptic glutamate turnover with age may underlie the reduction in the BOLD response, while CBF is preserved
- …
