A non-Hermitian complex symmetric 2x2 matrix toy model is used to study
projective Hilbert space structures in the vicinity of exceptional points
(EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are
Puiseux-expanded in terms of the root vectors at the EP. It is shown that the
apparent contradiction between the two incompatible normalization conditions
with finite and singular behavior in the EP-limit can be resolved by
projectively extending the original Hilbert space. The complementary
normalization conditions correspond then to two different affine charts of this
enlarged projective Hilbert space. Geometric phase and phase jump behavior are
analyzed and the usefulness of the phase rigidity as measure for the distance
to EP configurations is demonstrated. Finally, EP-related aspects of
PT-symmetrically extended Quantum Mechanics are discussed and a conjecture
concerning the quantum brachistochrone problem is formulated.Comment: 20 pages; discussion extended, refs added; bug correcte