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Autism spectrum disorders (ASDs) are highly heritable developmental disorders caused by a heterogeneous collection of genetic lesions.
Here we use a mouse model to study the effect on cortical connectivity of disrupting the ASD candidate gene PTEN (phosphatase and
tensin homolog deleted on chromosome 10). Through Cre-mediated recombination, we conditionally knocked out PTEN expression in a
subset of auditory cortical neurons. Analysis of long-range connectivity using channelrhodopsin-2 revealed that the strength of synaptic
inputs from both the contralateral auditory cortex and from the thalamus onto PTEN-cko neurons was enhanced compared with nearby
neurons with normal PTEN expression. Laser-scanning photostimulation showed that local inputs onto PTEN-cko neurons in the
auditory cortex were similarly enhanced. The hyperconnectivity caused by PTEN-cko could be blocked by rapamycin, a specific inhibitor
of the PTEN downstream molecule mammalian target of rapamycin complex 1. Together, our results suggest that local and long-range
hyperconnectivity may constitute a physiological basis for the effects of mutations in PTEN and possibly other ASD candidate genes.

Introduction
Autism spectrum disorders (ASDs) are a group of widespread
developmental disorders with diverse neuropsychiatric symp-
toms, occurring in 1 of 150 individuals (Fombonne, 2005). ASDs
are highly heritable, and dozens of genes have been implicated in
their etiology (Sebat et al., 2007; Glessner et al., 2009), but it is
unclear how these heterogeneous genetic factors converge to
cause the common signatures of ASDs (Veenstra-Vanderweele et
al., 2004; Gupta and State, 2007; Schmitz and Rezaie, 2008). It has
been hypothesized that disruption of long-range cortical connec-
tions could represent the “final pathway” by which diverse ASD
genotypes lead to ASD phenotypes (Geschwind and Levitt, 2007).
Understanding how neural circuits are altered in animal mod-
els of ASDs may therefore provide insight into the mecha-
nisms of ASD.

Here we focus on the ASD candidate gene PTEN (phosphatase
and tensin homolog deleted on chromosome 10). Originally
identified as a glioma tumor suppressor (Li et al., 1997; Steck et
al., 1997), PTEN negatively regulates cell growth, proliferation,
polarity, migration, and survival (Leslie et al., 2008; Chalhoub
and Baker, 2009) through its inhibition of phosphatidylinositol
3,4,5-trisphosphate-dependent pathways (Maehama and Dixon,
1998). Germline PTEN mutations have been identified in autistic
individuals with extreme macrocephaly (Goffin et al., 2001; But-
ler et al., 2005). Animal studies further support PTEN as an ASD

gene (Kwon et al., 2006). Neuronal deletion of PTEN leads to
increased soma size, hypertrophic and ectopic dendrites, axonal
tracts with increased synapses, and higher excitatory spontane-
ous activity (Kwon et al., 2006; Luikart et al., 2011). In vivo im-
aging reveals that deletion of PTEN in mature mice increases the
length and tortuosity of apical dendrites of cortical layer 2/3 neu-
rons (Chow et al., 2009). However, little is known about the effect
of PTEN disruption on functional connectivity.

ASDs are often associated with difficulties in auditory process-
ing and attention. ASD subjects may show acoustic hyposensitiv-
ity or hypersensitivity (Baranek et al., 1997; Dawson et al., 1998)
and failure to integrate complex auditory information (Boddaert
et al., 2004), and may have problems in spatial attention to sound
(Teder-Sälejärvi et al., 2005). The auditory cortex forms func-
tional connections with other sensory cortices and various brain-
stem areas (Budinger and Scheich, 2009), and plays a critical role
in auditory attention and perception (Fritz et al., 2007). Auditory
cortical connectivity thus represents a suitable system for under-
standing circuit-level deficits in animal models of ASDs.

We have assessed the effect of PTEN deletion on functional
cortical connectivity. We found that loss of PTEN in cortical
neurons enhanced the strength of inputs from both the contralat-
eral auditory cortex and the thalamus, as well as from local in-
puts. The hyperconnectivity caused by loss of PTEN could be
blocked by administration of rapamycin, a specific inhibitor of
the PTEN downstream molecule mammalian target of rapamy-
cin complex 1 (mTORC1). Together, our results suggest that
local and long-range hyperconnectivity may constitute a physio-
logical basis for the effects of mutations in PTEN and possibly in
other ASD candidate genes.

Materials and Methods
Animals and virus. Animal procedures were approved by the Cold Spring
Harbor Laboratory Animal Care and Use Committee. PTEN loxP/loxP

mice (Trotman et al., 2003) were a gift from Dr. Lloyd Trotman’s labo-
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ratory (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) and
bred in our own lab. The channelrhodopsin-2 (ChR2)–venus construct
was from Dr. Karel Svoboda’s laboratory (Janelia Farm Research Cam-
pus, Ashburn, VA), and the GFP–IRES–Cre construct was from Dr. Josh
Huang’s laboratory (Cold Spring Harbor Laboratory, Cold Spring Har-
bor, NY). The corresponding viruses [adeno-associated virus (AAV) 2/9]

were made at the University of North Carolina Gene Therapy Center.
Mice were anesthetized by isoflurane (1%, v/v), and virus was injected
into mouse auditory cortex or medial geniculate body (MGB) between
P18 and P21.

Long-range connection stimulation and recording. Experiments used
PTEN loxP/loxP mice under protocols approved by the Cold Spring Har-

Figure 1. Effect of PTEN deletion on intrinsic membrane properties. A, Map of Cre-mediated deletion of exons 4 and 5 of the PTEN gene. Triangles indicate loxP sites, and black boxes indicate
exons. B, Site of injection of AAV-GFP-IRES-Cre into the mouse auditory cortex. C, Immunostaining for PTEN expression indicates PTEN deletion in animals injected with AAV-GFP-IRES-Cre (top row)
but not AAV-GFP (bottom row). Arrows indicate example neurons. D, Top, PTEN deletion has no effect on resting membrane potential (�70.3 � 1.2 mV for control neurons, �71.6 � 1.0 mV for
PTEN-cko neurons, n � 19 for each group, p � 0.05); middle, PTEN deletion decreases input resistance (112.1 � 5.6 M� for control neurons, 134.4 � 9.0 M� for PTEN-cko neurons, n � 16 for
each group, *p � 0.05); bottom, PTEN deletion has no effect on excitation threshold (30.0 � 1.4 mV for control neuron, 30.5 � 1.0 mV for PTEN-cko neurons, n � 15 for each group, p � 0.05).
E, PTEN deletion subtly changed firing patterns of PTEN-cko neurons. Top, Example action potential traces for 100 and 400 pA current injections from PTEN-cko neuron (black) and control neuron
(gray). Bottom, Elicited action potential numbers plotted against corresponding injected currents into PTEN-cko neurons and control neurons (n � 16 for each group, *p � 0.05). Data
are mean � SE.
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bor Laboratory Animal Committee. We used young adult mice from P30
to P45. Animals were anesthetized and decapitated, and the brains were
transferred to a chilled cutting solution composed of the following (in
mM): 110 choline chloride, 25 NaHCO3, 25 D-glucose, 11.6 sodium
ascorbate, 7 MgCl2, 3.1 sodium pyruvate, 2.5 KCl, 1.25 NaH2PO4, and
0.5 CaCl2. In this study, we made coronal slices. All slices were 350 �m
thick and were transferred to artificial CSF (ACSF) containing the fol-
lowing (in mM): 127 NaCl, 25 NaHCO3, 25 D-glucose, 2.5 KCl, 4 MgCl2,
1 CaCl2, and 1.25 NaH2PO4, aerated with 95% O2 5% CO2. The slices
were incubated at 34°C for 20 –30 min and then kept at room tempera-
ture (22°C) during the experiments. Neurons in the slice were visualized
using infrared gradient contrast optics and patched with electrodes (4 –5
M�) containing the following intracellular solution (in mM): 128 potas-
sium methylsulfate, 4 MgCl2, 10 HEPES, 1 EGTA, 4 Na2-ATP, 0.4 Na2-
GTP, 10 sodium phosphocreatine, 0.5% Biocytin (Sigma), and 0.015
Alexa Fluor 594 (Invitrogen), pH 7.25, 300 mOsm. The presence of Alexa
Fluor 594 in the internal solution rendered cells fluorescent. We con-
firmed that cells were excitatory by visualizing their dendritic arbor and
spines. Whole-cell recordings were made using Axopatch 200B amplifi-
ers (Axons Instruments/Molecular Devices). Excitatory currents were
measured at a holding potential of �70 mV, and action potentials were
recorded in current-clamp configuration. We delivered light pulses
though a lightguide microscope illumination system (Lumen Dynamics)
modified to accept a blue-light laser (473 nm, Lasermate Group) in place
of the lamp. The laser beam is focused onto the microscope field through
the 60� objective during recordings. mEPSCs were recorded in the pres-
ence of 1 �M tetrodotoxin and 100 �M picrotoxin, and events were de-

tected and analyzed in Clampfit (Molecular Devices). The t test) was used
to assess significance.

Laser scanning photostimulation. Hardware control and data acquisi-
tion for laser-scanning photostimulation (LSPS) were performed using
ephus (http://www.ephus.org/), as described previously (Shepherd and
Svoboda, 2005; Oviedo et al., 2010). Briefly, to the external ACSF solution
we added the following (in mM): 0.37 nitroindolinyl-caged gluta-
mate (Tocris Bioscience), 0.005 3-(2-carboxypiperazin-4-yl)-propyl-1-
phosphonic acid (Tocris Bioscience), 4 CaCl2, and 4 MgCl2. Caged
glutamate was focally photolyzed with a 1 ms light stimulus consisting of
100 pulses from a pulsed ultraviolet laser every 1 s (wavelength, 355 nm
with a repetition rate of 100 kHz; DPSS Lasers). The stimulus grid for
LSPS mapping in acute brain horizontal slices consisted of a 16 � 16 grid
with 75 �m spacing, which resulted in a mapping region of 1.125 � 1.125
mm. To isolate synaptic input responses, the mean current amplitude per
stimulus site was calculated in the 7.5–50 ms time window after ultravi-
olet stimulus and expressed as mean charge transfer [current (pA) �
synaptic epoch (ms)]. The values for each stimulus site are represented as
pixels in a color map. For every cell, we obtained two to four maps to create
an average input map and they were used for all analyses. We performed
cell-attached recordings to detect action potentials from L5 cells and con-
structed excitation profiles. These maps are used to measure how far from
the soma an ultraviolet flash can evoke an action potential and to calibrate
the laser power across cells. To construct these maps for L5 cells, a smaller
stimulus grid was used: an 8 � 16 grid with 50 �m spacing.

Immunostaining and measurement. To assess PTEN expression in con-
trol and PTEN-cko neurons, 60-�m-thick brain slices were prepared and

Figure 2. LSPS reveals that PTEN deletion enhances local inputs. A, Uncaging grid overlayed on auditory cortex. B, Example of synaptic inputs onto a layer 5 PTEN-cko neuron, shown as traces (left)
and as a color map (right). The white triangle represents the location of the cell body, and blackened pixels represent direct responses excluded from the analysis. C, Excitation profile maps (left
panels, n � 3 for each group) and interpolated population synaptic input maps (right panels) from groups of control neurons and PTEN-cko neurons (n � 10 for each group). D, Total input to
PTEN-cko neurons is enhanced, with the greatest effect in layer 2.
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stained with monoclonal anti-PTEN antibody (Millipore) and anti-GFP
antibody (Millipore). To visualize the dendritic arbors and spines of
biocytin-filled neurons, brain slices were fixed in 4% PFA for �12 h, and
we then followed a standard DAB staining protocol with Vectastain Kit
(Vector Labs). Reconstructed neuronal morphology was traced and an-
alyzed using ImageJ (NIH).

Rapamycin injection. Rapamycin powder (LC Laboratory) was dis-
solved in ethanol and stored at a stock concentration of 25 mg/ml in
aliquots at �20°C. A fresh working solution was prepared before use with
a final concentration of 1 mg/ml rapamycin in 4% ethanol, 5% Tween 80,
and 5% PEG400 (Zhou et al., 2009). Mice were injected intraperitoneally
with either rapamycin (10 mg/kg body weight) or saline once per day
continuously for 10 –14 d.

Results
Conditional knockout of PTEN in mouse left auditory cortex
To examine the role of PTEN in regulating functional cortical
connectivity, we used a Cre-lox approach to knock out PTEN
expression conditionally in a spatially and temporally controlled
manner. We injected an AAV expressing GFP-IRES-Cre into the
left auditory cortex of homozygous mutant mice (PTEN loxP/loxP)
in which PTEN exons 4 and 5 are flanked by loxP sites (Fig. 1A,B)
(Trotman et al., 2003). Infected neurons express GFP (as a
marker) and Cre recombinase, which renders the PTEN gene
defective. PTEN deletion was thus limited to only the subset of

Figure 3. Long-range ChR2 mapping reveals that all layers receive callosal inputs. A, Following AAV-ChR2-venus injection into the right auditory cortex, fluorescent axons and synaptic terminals
are seen at the injection site and in projection targets including ipsilateral thalamus and contralateral auditory cortex. Right image is an enlarged picture from red rectangle at left. B, action potentials
elicited by blue light pulses (1 ms, 10 Hz, 475 nm) from virus-infected neurons on the right auditory cortex. C, Top, Examples of light-evoked EPSCs recorded at �70 mV for different extracellular
divalent ion concentration. Under conditions of high release probability (left), responses are larger and multipeaked, indicating polysynaptic input. Reducing release probability (right) leads to
smaller and smoother traces. Bottom, Example traces of single light-evoked EPSCs at different divalent ion concentrations when neurons were held at three voltages. At high release probability,
there is a clear polysynaptic inhibitory component that is absent at low release probability. D, Mean latency versus SDs of EPSCs from individual cells. Average latency across cells is 4.7 � 0.2 ms,
average SD is 0.30 � 0.02 ms (n � 23). E, Light-evoked EPSCs are blocked by application of CNQX (50 �M). Cells were held at �70 mV under voltage-clamp. F, Laminar distribution of neurons
tested. The distance from pia to white matter in each brain slice was normalized, and the distance to the pia from each recorded neuron was measured. The horizontal position is randomly assigned.
Data are presented as mean � SE.
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infected neurons near the site of injection. Using this strategy, we
could assess the direct effect of PTEN deletion by comparing the
properties of infected neurons with nearby “wild-type” (unin-
fected) controls.

In brain slices from mice injected with AAV-GFP-IRES-Cre,
antibody staining showed no detectable PTEN signal in GFP-
positive neurons (Fig. 1C, top), confirming that AAV-mediated
expression of Cre recombinase caused functional deletion of the
PTEN gene. By contrast, in brain slices from control PTENloxP/loxP

mice injected with a virus (AAV-GFP) expressing only GFP but
no Cre recombinase, GFP and PTEN were colocalized (Fig. 1C,
bottom) in virus-infected neurons, confirming that loss of PTEN
depended on the Cre-mediated deletion of exons 4 and 5 and was
not simply due to AAV viral infection. In subsequent experi-
ments, we used GFP expression to identify virally injected neu-
rons, which are PTEN-cko (PTEN conditional knockout) in the
case of AAV-GFP-IRES-Cre injection.

We first examined the intrinsic physiological properties of
PTEN-cko neurons with whole-cell patch-clamp recording, us-
ing nearby (�50 �m) GFP-negative neurons as control. Neurons
were filled with biocytin to permit subsequent analysis of cell
morphology. All cells included in this study were pyramidal neu-
rons across layer 2 to layer 6, as confirmed by morphology.
PTEN-cko neurons had resting membrane potentials similar to
those of nearby control neurons (�70.3 � 1.2 and �71.6 � 1.0
mV, respectively, mean � SE) (Fig. 1D, top) as well as similar
spike thresholds (30.0 � 1.4 mV for control neurons, 30.5 � 1.0
mV for PTEN-cko neurons) (Fig. 1D, bottom; but see Fig. 1E).
However, the input resistance of PTEN-cko neurons was some-
what lower than that of nearby control neurons (112.1 � 5.6 and
134.4 � 9.0 M�, respectively) (Fig. 1D, middle).

PTEN-cko neurons receive stronger local inputs in
auditory cortex
We next used LSPS to assess how PTEN regulates local connectivity
within the auditory cortex (Oviedo et al., 2010). To study local and
long-range connectivity in a single cell type, we focused on layer 5
pyramidal neurons, which receive inputs from the thalamus and
from the contralateral auditory cortex (Cruikshank et al., 2002;
Oviedo et al., 2010). We injected AAV-GFP-IRES-Cre into left au-
ditory cortex of P18–P21 PTENloxP/loxP mice and performed LSPS
experiments 10–14 d after virus injection. We minimized the effect
of homeostatic compensation by infecting sparsely, so PTEN was
deleted in only a small number of neurons. Acute horizontal brain
slices were bathed in ACSF containing caged glutamate for local
connectivity mapping (Fig. 2A). Using excitation profiles, we found
no differences in the number and spatial profile of action potentials
evoked per ultraviolet flash between wild-type and PTEN-cko neu-
rons (Fig. 2C) (see Materials and Methods). After achieving a whole-
cell recording, a UV laser was flashed briefly (1 ms) to release caged
glutamate focally. Short-latency EPSCs following the flash resulted
from action potentials elicited in several neurons near the site of
uncaging. By flashing the UV beam sequentially over hundreds of
spots, the spatial pattern of inputs to each recorded layer 5 pyramidal
neurons was obtained (Fig. 2A,B).

Across the population, we found that both PTEN-cko neu-
rons and nearby control neurons (�50 �m) received excitatory
inputs from other layers in primary auditory cortex, with the
largest inputs arising from layer 2 (Fig. 2C). However, the total
input onto PTEN-cko neurons was significantly higher than onto
nearby controls (Fig. 2D) (2.16 � 0.28 for control, 3.14 � 0.34
for PTEN-cko, n � 10 in each group, p � 0.05). This increase was
greatest for inputs arising from layer 2 (4.24 � 0.75 for control,

Figure 4. PTEN deletion enhances synaptic responses to callosal inputs on PTEN-cko neurons. A, Experimental strategy. AAV-ChR2-venus was injected into right auditory cortex, and AAV-GFP-
IRES-Cre was injected into left auditory cortex. B, Example traces of EPSCs elicited by blue light pulses (1 ms, 2 Hz, 475 nm). C, EPSC amplitude scatter plot for each pair of recorded neurons showing
enhancement of EPSCs recorded in PTEN-cko neurons (closed circles: control vs control neurons; open circles: control versus PTEN-cko neurons; circles with error bars: mean values and SEs for each
group). D, Laminar distribution of control/PTEN-cko pairs (n � 11), indicating relative EPSC enhancement (PTEN-cko/control) at each site.
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7.74 � 1.46 for PTEN-cko, n � 10 in each group, p � 0.05), but
was present in all layers. These results indicate that PTEN knock-
out increased the strength of local inputs, without grossly dis-
rupting the overall pattern of local connections.

ChR2-mediated optical stimulation of callosal inputs to
auditory cortex
We then assessed the effect of PTEN knockout on long-range
connections onto auditory cortical neurons. The auditory cortex
receives inputs from many other regions, including the contralat-
eral auditory, somatosensory, and motor cortices. Using tradi-
tional methods, such long-range connections can only be studied
in vitro in cases where the anatomy is favorable (i.e., when it is
possible to prepare a single planar brain slice preserving the pre-
synaptic elements along with their postsynaptic targets). To cir-
cumvent these difficulties, we used ChR2 (Nagel et al., 2003;
Zhang et al., 2007). Neurons expressing ChR2 can be excited to
fire action potentials by flashing blue light, and presynaptic re-
lease from ChR2-positive axon terminals can be induced by
flashes even when the axons are severed from their parent somata
(Petreanu et al., 2007). Our strategy was therefore to express
ChR2 in brain areas known to project to the auditory cortex.

To establish this approach for the auditory cortex, we performed
initial control experiments in wild-type mice. We targeted the cal-
losal pathway by injecting AAV-expressing ChR2-venus (AAV-
ChR2-venus) into the right auditory cortex of wild-type mice. In
acute coronal brain slices prepared 2 weeks after virus injection,
ChR2-venus-expressing axon terminals originating from cal-
losally projecting neurons in right auditory cortex could readily
be seen in the left auditory cortex (Fig. 3A). We first confirmed
that ChR2-positive neurons at the site of the injection could be

excited reliably by brief blue light pulses (1 ms, 475 nm) (Fig. 3B).
Next, we used whole-cell patch-clamp methods to record light-
evoked PSCs in pyramidal neurons in the left auditory cortex,
contralateral to the injection. In standard ACSF (2 mM Ca 2�, 1
mM Mg 2�), light flashes often elicited multipeaked responses
(Fig. 3C, left), suggesting a mixture of both direct callosal and
recurrent local inputs. Furthermore, under these conditions re-
sponses consisted of both excitatory and inhibitory components
(Fig. 3C, left); since long-range callosal connections are purely
excitatory, the presence of inhibitory currents confirmed that
light-evoked responses include a polysynaptic component.

Since we were interested in the direct callosal input, we sought
conditions under which such polysynaptic activity was absent. To
isolate the direct monosynaptic callosal input, we reduced pre-
synaptic release probability by changing the extracellular divalent
cation concentration (1 mM Ca 2�, 4 mM Mg 2�) (Dodge and
Rahamimoff, 1967). Under these conditions, light-evoked post-
synaptic responses had single peaks (Fig. 3C, right), no inhibitory
component (Fig. 3C, right), and short latencies (4.7 � 0.2 ms;
range 3– 8 ms) with small jitter (0.30 � 0.02 ms) (Fig. 3D). These
light-evoked EPSCs were completely blocked by CNQX (Fig. 3E),
indicating that they were mediated by AMPA-type glutamate re-
ceptors. Direct light-evoked EPSCs were observed in neurons (23
of 26) tested in auditory cortex across all layers (Fig. 3F).

PTEN-cko increased neuronal responses to auditory callosal
and thalamic inputs
Having established conditions under which we could examine
direct callosal inputs to the auditory cortex, we next compared
these light-evoked EPSCs in PTEN-cko neurons with EPSCs re-
corded in nearby wild-type control neurons. In these experi-

Figure 5. PTEN deletion enhances synaptic responses to thalamic inputs on PTEN-cko neurons. A, Experimental strategy. AAV-ChR2-venus was injected into left MGB, and AAV-GFP-IRES-Cre was
injected into left auditory cortex. B, Example traces of EPSCs elicted by blue light pulses (1 ms, 2 Hz, 475 nm). C, EPSC amplitude scatter plot for each pair of recorded neurons (closed circles: control
vs control neurons; open circles: control vs PTEN-cko neurons; circles with error bars: mean values and SEs for each group). D, Laminar distribution of control/PTEN-cko pairs (n � 8), indicating
relative EPSC enhancement (PTEN-cko/control) at each site.
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ments, AAV-ChR2-venus was injected into the right auditory
cortex to deliver ChR2, and AAV-GFP-IRES-Cre was injected
into left auditory cortex to knock out PTEN expression. Two
weeks after injection, acute coronal brain slices were prepared for
electrophysiology recording. GFP-labeled PTEN-cko neurons
and nearby (�50 �m) control neurons were recorded (Fig.
4A,B). This paired experimental design normalizes for variability
across preparations caused by variable ChR2 injection and other
factors. For all 11 pairs of neurons, light-evoked responses in the
PTEN-cko neurons were larger than in nearby controls (230.6 �
44.4 vs 94.2 � 29.2 pA, p � 0.05) (Fig. 4C). The average enhance-
ment across the population was 3.46 � 0.61-fold (EPSCPTEN-cko/
EPSCControl, n � 11), with no apparent specificity across layers
(Fig. 4D).

To determine whether the effect of PTEN was unique to the
callosal projection, we applied the same experimental design to
the thalamocortical input. AAV-ChR2-venus was injected into
left auditory thalamus (MGB), and AAV-GFP-IRES-Cre was in-
jected into the left auditory cortex. Light-evoked EPSCs were
recorded from both control and PTEN-cko neurons (Fig. 5A,B).
As in the case of the callosal input, light-evoked EPSCs in PTEN-
cko neurons were enhanced compared with those in nearby con-
trol neurons (158.9 � 26.5 vs 71.3 � 20.7 pA, p � 0.05) (Fig. 5C).
The average enhancement across the population was 3.34 � 0.78-

fold (EPSCPTEN-cko/EPSCControl, n � 8),
and again there was no apparent specific-
ity across layers (Fig. 5D). Thus, knockout
of PTEN leads to a robust increase in the
efficacy of long-range excitatory synaptic
inputs from both the contralateral audi-
tory cortex and the thalamus.

PTEN deletion promotes outgrowth of
dendrites and spines, and increased
synaptic activity
Knockout of PTEN has previously been
shown to induce proliferation of axons
and dendrites (Kwon et al., 2006; Chow et
al., 2009; Luikart et al., 2011). Morpho-
logical analysis of biocytin-filled recorded
neurons confirmed increases in dendritic
total length and branch number (Fig.
6A,B), and in the density of spines (Fig.
6C), all of which might contribute to the
observed enhancement of synaptic input.
Analysis of miniature spontaneous EPSCs
revealed increased mEPSC frequency
(Fig. 6D), consistent with the increased
dendritic branch number and spine den-
sity. We also observed an increase in
mEPSC amplitude, which might further
contribute to the observed enhancement
of evoked synaptic efficacy.

PTEN deletion effect can be blocked
by rapamycin
PTEN is a negative regulator of the mTOR/
PI3K (phosphatidylinositol 3-kinase) path-
way. Downregulation of PTEN increases
mTORC1 kinase activity, which promotes
protein translation and cell growth through
downstream effectors (Zoncu et al., 2011).
To test whether the PTEN-cko effects we

observed were mediated by mTORC1, we administered the specific
mTORC1 inhibitor rapamycin. Ten days of intraperitoneal rapamy-
cin injection blocked the effect of PTEN knockout on spine number
(Fig. 7A,B), and on the PTEN-cko-mediated increase in the strength
of the callosal projection (Fig. 7C,D). Together, the complete sup-
pression of PTEN-cko-mediated effects on spine number and syn-
aptic strength suggests that these effects are mediated largely or
wholly by the mTORC1 pathway.

Discussion
We have studied the effects of spatiotemporally restricted PTEN
deletion on cortical connectivity. Using viral delivery of Cre re-
combinase, we deleted PTEN after early development in a subset
of neurons in the mouse auditory cortex, with nearby uninfected
neurons as an internal control. Our main conclusions are as fol-
lows: (1) deletion of PTEN causes a rapid and robust increase in
the strength of both long-range and local excitatory inputs; (2)
deletion of PTEN causes an increase in dendritic length and spine
density; and (3) these effects are blocked by rapamycin, suggest-
ing that they occur through the mTORC1 pathway. Our study is
the first functional comparison of how perturbing an ASD affects
both local and long-range synaptic connectivity. Our findings
suggest that hyperconnectivity may constitute a physiological ba-

Figure 6. PTEN deletion promoted spine outgrowth and increased mEPSCs. A, Morphology of a biocytin-filled neuron (top),
neurite traces in ImageJ (middle), and spine images (bottom). B, Quantification of total neurite length (top graph) and branches
(bottom graph) of reconstructed neurons. Total length (�m), control neurons 980.26 � 148.29, PTEN-cko neurons 1611.17 �
218.30 (*p � 0.05, n � 6 neurons for each group). Branches number, control neurons 11.0 � 0.8, PTEN-cko neurons 15.8 � 1.3
(*p � 0.05, n � 6 neurons for each group). C, Spine densities (counts/10 �m) for control (4.1 � 0.2) and PTEN-cko (9.1 � 1.1)
neurons (**p � 0.001, n � 15 for control neurons and n � 7 for PTEN-cko neurons). D, Top, mEPSC sample traces recorded from
control and PTEN-cko neurons. Bottom left, Quantification of mEPSC frequency, control neuron 5.0 � 0.6, PTEN-cko 14.2 � 1.5
(**p � 0.001, n � 17 for control neurons and n � 15 for PTEN-cko neurons), and quantification of mEPSC mean amplitude,
control neuron 5.6 � 0.2, PTEN-cko 13.1 � 0.3 (**p � 0.001, n � 17 for control neurons and n � 15 for PTEN-cko neurons). Data
are mean � SE. Bottom right, Cumulative histograms of mEPSCs from control and PTEN-cko neurons.
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sis for the effects of mutations in PTEN
and possibly in other ASD candidate
genes.

PTEN hyperconnectivity and ASDs
Autism is defined by the core triad of
symptoms: impaired language, impaired
social interaction, and restricted and re-
petitive behaviors. Because these symp-
toms affect behaviors that are unique to or
highly specialized in humans, a central
challenge in developing animal models of
ASD is to find circuit-level endopheno-
types. ASDs may arise from disruption of
any of dozens of candidate genes (Sebat et
al., 2007; Glessner et al., 2009), but it re-
mains unclear what these diverse genetic
pathways have in common. Convergent
lines of evidence have led to the hypothesis
that local hyperconnectivity and long-range
hypoconnectivity represent a unifying
mechanism for the core cognitive and be-
havioral deficits in ASD (Courchesne et al.,
2005; Geschwind and Levitt, 2007).

We found using LSPS that PTEN dele-
tion increased the strength of local inputs
onto layer 5 neurons in auditory cortex,
supporting the local hyperconnectivity hy-
pothesis. Comparable increases in efficacy
were obtained using similar methods for
another ASD candidate gene, the recep-
tor tyrosine kinase MET (Qiu et al., 2011),
although in that case the changes were specific to a subset of layer
5 neurons. Another ASD candidate gene, CNTNAP2, was found
using functional magnetic resonance imaging to correlate with
increased local frontal connections in autistic patients (Scott-Van
Zeeland et al., 2010). However, other ASD candidate genes, in-
cluding FMR1 (Bureau et al., 2008) and MeCP2 (Wood et al.,
2009), are associated with decreased local connectivity. Thus, it
appears that disruption of ASD candidate genes can cause both
hyperconnectivity and hypoconnectivity.

Using ChR2 to target long-range projections (Petreanu et al.,
2007) to auditory cortex, we found that PTEN disruption caused
a consistent increase in the strength of inputs from both the
contralateral auditory cortex and the auditory thalamus. This
increase was comparable for both projections across cortical re-
cipient layers, suggesting that these effects are not pathway spe-
cific, but are likely to be similar for other inputs as well.

ASD has been hypothesized to arise from a partial disruption
during development of long-range connections (Geschwind and
Levitt, 2007). Our finding that PTEN-cko neurons in the audi-
tory cortex received stronger inputs from both the contralateral
cortex and the thalamus are consistent with this model. Further-
more, our results suggest that disruption can occur not only by
weakening of connections but also by enhancement, suggesting
that it is the precise balance of local and long-range connections
that is essential to normal function.

PTEN in neuronal development and circuitry maintenance
PTEN has previously been implicated in the development and
maintenance of neuronal circuits. The effect of knocking out
PTEN depends on the developmental stage at which the knock-
out occurs. PTEN expresses very early in embryonic develop-

ment, and PTEN knockout leads to embryonic lethality at E7.5–
E9.5 (Di Cristofano et al., 1998). In our study, we deleted PTEN at
P18 –P21, when auditory cortical neurons already have estab-
lished most local synaptic connections (Oswald and Reyes, 2008;
Barkat et al., 2011), and assessed the resulting phenotype at P30 –
P45. Our findings are consistent with previous results showing
neuronal hypertrophy and an increase of the density of dendritic
spines after PTEN knockout at either P7 or at P42–P56 (Luikart et
al., 2011), and with the increase in dendritic growth observed
after PTEN knockout at P28 (Chow et al., 2009). Thus, our results
may reflect mainly the role of PTEN in maintaining and refining,
rather than establishing, neural connections.

In our experiments, we knocked out PTEN in relatively sparse
subset of cortical neurons. This approach has the advantage that it
allows for a direct comparison between PTEN-cko neurons and
nearby control neurons in the same slice, but requires that we limit
our conclusions largely to cell-autonomous postsynaptic effects of
PTEN misregulation. To the extent that the sparse and dense models
can be compared directly—the effect on dendritic morphology and
spine density—the two approaches agree; but the results of the pres-
ent study may not extrapolate directly to the case in which a germline
mutation leads to a genetically uniform neuronal population. More-
over, the effect of PTEN may be different in different subsets of
neurons (e.g., inhibitory interneurons). Nevertheless, an under-
standing of the cell autonomous effects provides a foundation for
understanding the role of PTEN in regulating neuronal circuits.

Mechanisms of PTEN hyperconnectivity
Consistent with previous studies in other brain regions (Kwon et
al., 2006; Fraser et al., 2008; Chow et al., 2009; Luikart et al.,
2011), we found (Fig. 6) that PTEN deletion caused morpholog-
ical changes in neurons, including increased neurite branching

Figure 7. Rapamycin antagonized PTEN-cko effects on auditory cortical neurons. A, Images of biocytin staining for neuron morphology
reconstruction. B, Quantified spine densities (counts/10 �m) for control and PTEN-cko neurons from saline- or rapamycin-injected mice
(right). In the saline group, control neurons 4.6�0.5, PTEN-cko neurons 9.8�0.6 (**p�0.001, n�4 for control neurons and n�6 for
PTEN-cko neurons). In the rapamycin group, control neurons 4.7�0.8, PTEN-cko neurons 6.1�0.3 ( p�0.05, n�4 for control neurons
and n�5 for PTEN-cko neurons). C, EPSC amplitude scatter plot for each pair of recorded neurons (closed circle: rapamycin-injected mice;
open circle: saline-injected mice). D, For each pair of neurons, EPSC amplitudes were normalized to the value from control neuron. In saline
group,3.39�0.75(*p�0.01,n�6). Inrapamycingroup,1.11�0.17( p�0.05,n�8).Opencirclesshowincreasefor individualpairs
(EPSCPTEN-cko/EPSCControl), black bars are the mean increase for each injection group. Data are mean � SE.
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and higher spine density. These morphological changes could
contribute to the observed increase in the frequency of mEPSCs
(Fig. 6D) (Luikart et al., 2011), but cannot readily explain the
observed increase in mEPSC amplitude (Fig. 6D), suggesting that
PTEN directly regulates synaptic release machinery. Both mor-
phological and other changes could contribute to the observed
increases in local and long-range excitatory connectivity.

However, in a previous report Fraser et al. (2008) showed that
conditional deletion of PTEN weakened synaptic transmission at
CA3–CA1 excitatory synapses in hippocampus. This contradic-
tion could be due to the differences in examined brain areas, the
deletion onset time, and the deletion populations. Further studies
may be done to clarify PTEN functions in various brain areas and
in different developmental stages.

Signaling pathways underlying PTEN hyperconnectivity
Many genes have been implicated in the etiology of ASDs, includ-
ing molecules in the PI3K pathway. In addition to PTEN, the
tuberous sclerosis complex (TSC) is the major upstream mTORC1-
negative regulator (Manning and Cantley, 2007). Mutations of TSC
genes, in addition to giving rise to an inheritable disease syndrome,
have also been implicated in ASDs (de Vries, 2010; Ehninger and
Silva, 2011; Numis et al., 2011; Waltereit et al., 2011; Ehninger et al.,
2012).

Neurofibromatosis type 1 is a Ras-antagonizing tumor sup-
pressor, whose loss can result in activation of the PI3K pathway to
produce gliomas (Hambardzumyan et al., 2011), and its muta-
tions have been associated with ASD (Ey et al., 2011). Different
downstream targets in PI3K/Akt pathways lead to distinct ana-
tomical and cellular effects. One group of downstream targets,
the small GTPases of the Rac, Cdc42, and Arf families, are in-
volved in PTEN-mediated effects on cell polarity and migration
(Liliental et al., 2000; Raftopoulou et al., 2004; Leslie et al., 2007;
Dey et al., 2008). Yet, the major node in the PTEN pathway is the
oncogenic Akt kinase, which has a wide variety targets, including
mTORC1, that promote protein synthesis, cell growth, and pro-
liferation (Manning and Cantley, 2007). Our observation that
inhibition of mTORC1 by rapamycin abolished the effects of
PTEN-cko (Fig. 7) indicates that mTORC1-dependent signaling
axis is the primary mechanism for these effects under our condi-
tions. It has also been shown that rapamycin injection can pre-
vent and reverse macrocephaly, neuronal hypertrophy, and
abnormal behaviors in PTEN mutant mice (Zhou et al., 2009),
presumably through inhibition of mTORC1 activity. Together,
these data suggest that the mTORC1 may represent a therapeutic
target for certain cases of PTEN-mediated brain disorders.

Our study not only provides new evidence for a role of PTEN
in regulating cortical connectivity, but also demonstrates a gen-
eral paradigm for assessing the effect of ASD candidate genes.
Such information will provide insights into the mechanisms of
ASD, and guide the development of novel therapeutic strategies
and approaches.
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