399 research outputs found

    The Importance of Maine for Ecoregional Conservation Planning

    Get PDF
    Ecoregional conservation planning aims at protecting biodiversity within a realistic social and economic framework. The authors of this article suggest that Maine’s forests are the ecological core of the entire Northern Appalachian/Acadian ecoregion, which spans four states and five Canadian provinces. Using mapping and mathematical models of the “human footprint,” they note that Maine has a large, contiguous, undeveloped and unfragmented forest compared with neighboring states and provinces. However, compared with its neighbors Maine also has the largest proportion of unprotected forest. The authors conclude with the hope that land use policy and planning can be better informed through the active integration of recent ecoregional conservation mapping model

    Lessons from integrating behaviour and resource selection: activity-specific responses of African wild dogs to roads

    Get PDF
    Understanding how anthropogenic features affect species' abilities to move within landscapes is essential to conservation planning and requires accurate assessment of resource selection for movement by focal species. Yet, the extent to which an individual's behavioural state (e.g. foraging, resting, commuting) influences resource selection has largely been ignored. Recent advances in Global Positioning System (GPS) tracking technology can fill this gap by associating distinct behavioural states with location data. We investigated the role of behaviour in determining the responses of an endangered species of carnivore, the African wild dog Lycaon pictus, to one of the most widespread forms of landscape alteration globally: road systems. We collected high‐resolution GPS and activity data from 13 wild dogs in northern Botswana over a 2‐year period. We employed a step selection framework to measure resource selection across three behavioural states identified from activity data (high‐speed running, resting and travelling) and across a gradient of habitats and seasons, and compared these outputs to a full model that did not parse for behaviour. The response of wild dogs to roads varied markedly with both the behavioural and the landscape contexts in which roads were encountered. Specifically, wild dogs selected roads when travelling, ignored roads when high‐speed running and avoided roads when resting. This distinction was not evident when all movement data were considered together in the full model. When travelling, selection for roads increased in denser vegetative environments, suggesting that roads may enhance movement for this species. Our findings indicate that including behavioural information in resource selection models is critical to understanding wildlife responses to landscape features and suggest that successful application of resource selection analyses to conservation planning requires explicit examination of the behavioural contexts in which movement occurs. Thus, behaviour‐specific step selection functions offer a powerful tool for identifying resource selection patterns for animal behaviours of conservation significance

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    TEMPORAL TRENDS IN THE SPATIAL DISTRIBUTION OF IMPERVIOUS COVER RELATIVE TO STREAM LOCATION

    Get PDF
    Use of impervious cover is transitioning from an indicator of surface water condition to one that also guides and informs watershed planning and management, including Clean Water Act (33 U.S.C. §1251 et seq.) reporting. Whether it is for understanding surface water condition or planning and management, impervious cover is most commonly expressed as summary measurement (e.g., percentage watershed in impervious cover). We use the National Land Cover Database to estimate impervious cover in the vicinity of surface waters for three time periods (2001, 2006, 2011). We also compare impervious cover in the vicinity of surface waters to watershed summary estimates of impervious cover for classifying the spatial pattern of impervious cover. Between 2001 and 2011, surface water shorelines (streams and water bodies) in the vicinity of impervious cover increased nearly 10,000 km. Across all time periods, approximately 27% of the watersheds in the continental United States had proximally distributed impervious cover, i.e., the percentage of impervious cover in the vicinity of surface waters was higher than its watershed summary expression. We discuss how impervious cover spatial pattern can be used to inform watershed planning and management, including reporting under the Clean Water Act

    Road Ecology: Shifting Gears Toward Evolutionary Perspectives

    Get PDF
    Recent advances in understanding the often rapid pace of evolution are reshaping our view of organisms and their capacity to cope with environmental change. Though evolutionary perspectives have gained traction in many fields of conservation, road ecology is not among them. This is surprising because roads are pervasive landscape features that generate intense natural selection. The biological outcomes from these selection pressures – whether adaptive or maladaptive – can have profound consequences for population persistence. We argue that studying evolutionary responses is critical to accurately understand the impacts of roads. Toward that end, we describe the basic tenets and relevance of contemporary evolution and showcase the few examples where it has been documented in road ecology. We outline practical ways that road ecologists can estimate and interpret evolutionary responses in their research. Finally, we suggest priority research topics and discuss how evolutionary insights can inform conservation in landscapes traversed by roads

    Using multi-scale distribution and movement effects along a montane highway to identify optimal crossing locations for a large-bodied mammal community

    Get PDF
    Roads are a major cause of habitat fragmentation that can negatively affect many mammal populations. Mitigation measures such as crossing structures are a proposed method to reduce the negative effects of roads on wildlife, but the best methods for determining where such structures should be implemented, and how their effects might differ between species in mammal communities is largely unknown. We investigated the effects of a major highway through south-eastern British Columbia, Canada on several mammal species to determine how the highway may act as a barrier to animal movement, and how species may differ in their crossing-area preferences. We collected track data of eight mammal species across two winters, along both the highway and pre-marked transects, and used a multi-scale modeling approach to determine the scale at which habitat characteristics best predicted preferred crossing sites for each species. We found evidence for a severe barrier effect on all investigated species. Freely-available remotely-sensed habitat landscape data were better than more costly, manually-digitized microhabitat maps in supporting models that identified preferred crossing sites; however, models using both types of data were better yet. Further, in 6 of 8 cases models which incorporated multiple spatial scales were better at predicting preferred crossing sites than models utilizing any single scale. While each species differed in terms of the landscape variables associated with preferred/avoided crossing sites, we used a multi-model inference approach to identify locations along the highway where crossing structures may benefit all of the species considered. By specifically incorporating both highway and off-highway data and predictions we were able to show that landscape context plays an important role for maximizing mitigation measurement efficiency. Our results further highlight the need for mitigation measures along major highways to improve connectivity between mammal populations, and illustrate how multi-scale data can be used to identify preferred crossing sites for different species within a mammal community

    Do Bat Gantries and Underpasses Help Bats Cross Roads Safely?

    Get PDF
    Major roads can reduce bat abundance and diversity over considerable distances. To mitigate against these effects and comply with environmental law, many European countries install bridges, gantries or underpasses to make roads permeable and safer to cross. However, through lack of appropriate monitoring, there is little evidence to support their effectiveness. Three underpasses and four bat gantries were investigated in northern England. Echolocation call recordings and observations were used to determine the number of bats using underpasses in preference to crossing the road above, and the height at which bats crossed. At gantries, proximity to the gantry and height of crossing bats were measured. Data were compared to those from adjacent, severed commuting routes that had no crossing structure. At one underpass 96% of bats flew through it in preference to crossing the road. This underpass was located on a pre-construction commuting route that allowed bats to pass without changing flight height or direction. At two underpasses attempts to divert bats from their original commuting routes were unsuccessful and bats crossed the road at the height of passing vehicles. Underpasses have the potential to allow bats to cross roads safely if built on pre-construction commuting routes. Bat gantries were ineffective and used by a very small proportion of bats, even up to nine years after construction. Most bats near gantries crossed roads along severed, pre-construction commuting routes at heights that put them in the path of vehicles. Crossing height was strongly correlated with verge height, suggesting that elevated verges may have some value in mitigation, but increased flight height may be at the cost of reduced permeability. Green bridges should be explored as an alternative form of mitigation. Robust monitoring is essential to assess objectively the case for mitigation and to ensure effective mitigation

    Analyses of least cost paths for determining effects of habitat types on landscape permeability: wolves in Poland

    Get PDF
    Determining ecological corridors is crucial for conservation efforts in fragmented habitats. Commonly employed least cost path (LCP) analysis relies on the underlying cost matrix. By using Ecological Niche Factor Analysis, we minimized the problems connected with subjective cost assessment or the use of presence/absence data. We used data on the wolf presence/absence in Poland to identify LCPs connecting patches of suitable wolf habitat, factors that influence patch occupancy, and compare LCPs between different genetic subpopulations. We found that a lower proportion of cities and roads surrounds the most densely populated patches. Least cost paths between areas where little dispersal takes place (i.e., leading to unpopulated patches or between different genetic subpopulations) ran through a higher proportion of roads and human settlements. They also crossed larger maximal distances over deforested areas. We propose that, apart from supplying the basis for direct conservation efforts, LCPs can be used to determine what factors might facilitate or hinder dispersal by comparing different subsets of LCPs. The methods employed can be widely applicable to gain more in-depth information on potential dispersal barriers for large carnivores
    • 

    corecore