83 research outputs found

    Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    Get PDF
    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode

    Shapes of Differential Pulse Voltammograms and Level of Metallothionein at Different Animal Species

    Get PDF
    Metallothioneins play a key role in maintaining homeostasis of essential metals and in protecting of cells against metal toxicity as well as oxidative damaging. Excepting humans, blood levels of metallothionein have not yet been reported from any animal species. Blood plasma samples of 9 animal species were analysed by the adsorptive transfer stripping technique to obtain species specific voltammograms.Metallothioneins play a key role in maintaining homeostasis of essential metals and in protecting of cells against metal toxicity as well as oxidative damaging. Excepting humans, blood levels of metallothionein have not yet been reported from any animal species. Blood plasma samples of 9 animal species were analysed by the adsorptive transfer stripping technique to obtain species specific voltammograms

    Uporaba voltmetrije za određivanje tiola i metalotioneina male molekularne mase u krvi svinje (Sus scrofa domestica)

    Get PDF
    Metallothioneins (MT) play a key role in maintaining the homeostasis of essential metals and in protecting of cells against metal toxicity as well as cell oxidative damaging. The aim of this work is to propose a new approach for processing a biological sample for analysis of thiols including metallothioneins. Moreover, the proposed procedure is tested on quantification of MT and total thiol content in blood serum of pig (Sus scrofa domestica), which has not been previously been performed. The blood serum (10 ml) was collected and transferred to 0.2 M phosphate buffer (990 ml). The sample (100 × diluted) was placed in a thermomixer, where heat denaturation of most of the proteins proceeded. The processed blood serum sample was electrochemically measured to determine total content of thiols (cysteine, glutathione, metallothionein and other low molecular thermostable thiols) and content of MT. The average level of the thiols and MT were estimated as 165 ± 20 mM and 5.2 ± 0.6 mM, respectively.Metalotioneini (MT) igraju ključnu ulogu u odrĆŸavanju homeostaze esencijalnih metala i u zaĆĄtiti od toksičnih metala te od oĆĄtećivanja stanice oksidacijom. Cilj ovog rada je predloĆŸiti novi pristup obradi bioloĆĄkih uzoraka za analizu tiola, uključujući metalotioneine. Osim toga, predloĆŸeni postupak se testira pri kvantifikaciji MT i ukupnog sadrĆŸaja tiola u krvnom serumu svinje (Sus scrofa domestica), ĆĄto se dosad nije radilo. Prikupljan je krvni serum (10 ml) te prebacivan u 0.2 M fosfatni pufer (990 ml). Uzorak (100 × razrijeđen) je stavljen u termomikser gdje se nastavila toplinska denaturacija većine proteina. Obrađeni uzorak seruma je elektrokemijski izmjeren da bi se odredio ukupni sadrĆŸaj tiola (cistein, glutation, metalotionein i drugi termostabilni tioli male molekularne mase) te sadrĆŸaj MT. Prosječna razina tiola i MT su procijenjeni na 165 ± 20 mM, odnosno 5.2 ± 0.6 mM

    Zeptomole Electrochemical Detection of Metallothioneins

    Get PDF
    Thiol-rich peptides and proteins possess a large number of biological activities and may serve as markers for numerous health problems including cancer. Metallothionein (MT), a small molecular mass protein rich in cysteine, may be considered as one of the promising tumour markers. The aim of this paper was to employ chronopotentiometric stripping analysis (CPSA) for highly sensitive detection of MT.In this study, we used adsorptive transfer stripping technique coupled with CPSA for detection of cysteine, glutathione oxidized and reduced, phytochelatin, bovine serum albumin, and metallothionein. Under the optimal conditions, we were able to estimate detection limits down to tens of fg per ml. Further, this method was applied to detect metallothioneins in blood serum obtained from patients with breast cancer and in neuroblastoma cells resistant and sensitive to cisplatin in order to show the possible role of metallothioneins in carcinogenesis. It was found that MT level in blood serum was almost twice higher as compared to the level determined in healthy individuals.This paper brings unique results on the application of ultra-sensitive electroanalytical method for metallothionein detection. The detection limit and other analytical parameters are the best among the parameters of other techniques. In spite of the fact that the paper is mainly focused on metallothionein, it is worth mentioning that successful detection of other biologically important molecules is possible by this method. Coupling of this method with simple isolation methods such as antibody-modified paramagnetic particles may be implemented to lab-on-chip instrument

    Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants

    Get PDF
    Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic

    An Adsorptive Transfer Technique Coupled with Brdicka Reaction to Reveal the Importance of Metallothionein in Chemotherapy with Platinum Based Cytostatics

    Get PDF
    The drugs based on platinum metals represent one of the oldest, but also one of the most effective groups of chemotherapeutic agents. Thanks to many clinical studies it is known that resistance of tumor cells to drugs is a frequent cause of chemotherapy failure. With regard to platinum based drugs, multidrug resistance can also be connected with increased expression of low-molecular weight protein metallothionein (MT). This study aimed at investigating the interactions of MT with cisplatin or carboplatin, using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction), and a comparison of in vitro results with results obtained in vivo. The results obtained from the in vitro study show a strong affinity between platinum based drugs and MT. Further, we analyzed extracts of neuroblastoma cell lines treated with cisplatin or carboplatin. It is clear that neuroblastoma UKF-NB-4 cisplatin-resistant and cisplatin-sensitive cell lines unlikely respond to the presence of the platinum-based cytostatics cisplatin and carboplatin. Finally, we determined the level of MT in samples from rabbits treated with carboplatin and patients with retinoblastoma treated with the same drug

    Bio-Sensing of Cadmium(II) Ions Using Staphylococcus aureus†

    Get PDF
    Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA) and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II) ions. We were focused on monitoring the effects of different cadmium(II) ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 ÎŒg mL−1) on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds—specifically the protein metallothionein (0.79–26.82 mmol/mg of protein), the enzyme glutathione S-transferase (190–5,827 ÎŒmol/min/mg of protein), and sulfhydryl groups (9.6–274.3 ÎŒmol cysteine/mg of protein). The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II) ions on the metabolic pathways of arginine, ÎČ-glucosidase, phosphatase, N-acetyl ÎČ-d-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II) ion treatment conditions was completed seeking data about the possibility of cadmium(II) ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components

    Bio-Sensing of Cadmium(II) Ions Using Staphylococcus aureus†

    Get PDF
    Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA) and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II) ions. We were focused on monitoring the effects of different cadmium(II) ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 ÎŒg mL−1) on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds—specifically the protein metallothionein (0.79–26.82 mmol/mg of protein), the enzyme glutathione S-transferase (190–5,827 ÎŒmol/min/mg of protein), and sulfhydryl groups (9.6–274.3 ÎŒmol cysteine/mg of protein). The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II) ions on the metabolic pathways of arginine, ÎČ-glucosidase, phosphatase, N-acetyl ÎČ-d-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II) ion treatment conditions was completed seeking data about the possibility of cadmium(II) ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components

    Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry

    No full text
    Using a paraffin impregnated graphite electrode (PIGE) and mercury-modifiedpyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNApurine base solutions have been studied by cyclic (CV) and linear sweep voltammetry(LSV) in connection with elimination voltammetry with linear scan (EVLS). In chlorideand bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with twocathodic and two anodic potentially separated signals. According to the eliminationfunction E4, the first cathodic peak corresponds to the reduction Cu(II) e- → Cu(I) withthe possibility of fast disproportionation 2Cu(I) → Cu(II) Cu(0). The E4 of the secondcathodic peak signalized an electrode process controlled by a surface reaction. Theelectrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by onecathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodicstripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where thereduction of copper ions took place and Cu(I)-purine complexes were formed. By usingASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complexdetection was enhanced relative to either ASV or CSV alone, resulting in higher peakcurrents of more than one order of magnitude. The statistical treatment of CE data wasused to determine the reproducibility of measurements. Our results show that EVLS inconnection with the stripping procedure is useful for both qualitative and quantitativemicroanalysis of purine derivatives and can also reveal details of studied electrodeprocesses
    • 

    corecore