217 research outputs found

    The microbiome-gut-brain axis in acute and chronic brain diseases

    Get PDF
    The gut microbiome — the largest reservoir of microorganisms of the human body — is emerging as an important player in neurodevelopment and ageing as well as in brain diseases including stroke, Alzheimer’s disease and Parkinson’s disease. The growing knowledge on mediators and triggered pathways has advanced our understanding of the interactions along the gut-brain axis. Gut bacteria produce neuroactive compounds and can modulate neuronal function, plasticity and behavior. Furthermore, intestinal microorganisms impact the host’s metabolism and immune status which in turn affect neuronal pathways in the enteric and central nervous systems. Here, we discuss the recent insights from human studies and animal models on the bi-directional communication along the microbiome-gut-brain axis in both acute and chronic brain diseases

    Tracing U mobility in deep groundwater using Ra isotopes

    Get PDF
    The mobility of natural U is compared among four boreholes in a fractured granite using Ra isotopes and geochemical modelling. Rn-222/Ra-226 activity ratios (ARs) spanning an order of magnitude underline differences in reactive surface area. (Ra-224/Ra-228)(ARs) up to 9 indicate recent changes in hydrogeochemistry, and (Ra-226/Ra-228)(ARs) 0.6-30 indicate variable deposition of U. Dissolved U is related to dissolution of a solid U(VI) phase by groundwater with HCO3- > 20 mg.L-1. U reduction is hindered by Ca2UO2(CO3)(3)(0)

    Resposta de biótipos de Borreria latifolia do Sudoeste do Paraná e Norte de Santa Catarina ao herbicida glyphosate.

    Get PDF
    A erva-quente (Borreria latifolia) tem sido uma das principais espécies selecionadas pelo herbicida glyphosate em lavoura de soja nos estados do Paraná e Santa Catarina. O objetivo deste trabalho foi avaliar a resposta de biótipos de ervaquente ao glyphosate. O experimento foi realizado em casa de vegetação, em delineamento experimental completamente casualizado, com quatro repetições. Os tratamentos constituíram-se de doses crescentes de glyphosate (0, 74, 163, 360, 792 e 1742 g e.a. ha-1), aplicadas sobre quatorze biótipos de erva-quente oriundos de lavouras de soja RR do Sudoeste do Paraná e Norte de Santa Catarina. Foram avaliados o controle e a massa da parte aérea seca (MPAS). Os resultados indicam variabilidade de resposta ao glyphosate entre os biótipos coletados. Os biótipos 277, 283 e 300 não foram controlados com dose acima da usualmente utilizada nas lavouras, evidenciando seleção pelo uso repetitivo de herbicida

    Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges

    Get PDF
    Connecting chemical exposures over a lifetime to complex chronic diseases with multifactorial causes such as neurodegenerative diseases is an immense challenge requiring a long-term, interdisciplinary approach. Rapid developments in analytical and data technologies, such as non-target high resolution mass spectrometry (NT-HR-MS), have opened up new possibilities to accomplish this, inconceivable 20 years ago. While NT-HR-MS is being applied to increasingly complex research questions, there are still many unidentified chemicals and uncertainties in linking exposures to human health outcomes and environmental impacts. In this perspective, we explore the possibilities and challenges involved in using cheminformatics and NT-HR-MS to answer complex questions that cross many scientific disciplines, taking the identification of potential (small molecule) neurotoxicants in environmental or biological matrices as a case study. We explore capturing literature knowledge and patient exposure information in a form amenable to high-throughput data mining, and the related cheminformatic challenges. We then briefly cover which sample matrices are available, which method(s) could potentially be used to detect these chemicals in various matrices and what remains beyond the reach of NT-HR-MS. We touch on the potential for biological validation systems to contribute to mechanistic understanding of observations and explore which sampling and data archiving strategies may be required to form an accurate, sustained picture of small molecule signatures on extensive cohorts of patients with chronic neurodegenerative disorders. Finally, we reflect on how NT-HR-MS can support unravelling the contribution of the environment to complex diseases

    Prospects for measuring the gravitational free-fall of antihydrogen with emulsion detectors

    Get PDF
    The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moir\'e deflectometer. The goal is to determine the gravitational acceleration g for antihydrogen with an initial relative accuracy of 1% by using an emulsion detector combined with a silicon micro-strip detector to measure the time of flight. Nuclear emulsions can measure the annihilation vertex of antihydrogen atoms with a precision of about 1 - 2 microns r.m.s. We present here results for emulsion detectors operated in vacuum using low energy antiprotons from the CERN antiproton decelerator. We compare with Monte Carlo simulations, and discuss the impact on the AEgIS project.Comment: 20 pages, 16 figures, 3 table

    Plasma metabolic signatures of healthy overweight subjects challenged with an oral glucose tolerance test

    Get PDF
    Insulin secretion following ingestion of a carbohydrate load affects a multitude of metabolic pathways that simultaneously change direction and quantity of interorgan fluxes of sugars, lipids and amino acids. In the present study, we aimed at identifying markers associated with differential responses to an OGTT a population of healthy adults. By use of three metabolite profiling platforms, we assessed these postprandial responses of a total of 202 metabolites in plasma of 72 healthy volunteers undergoing comprehensive phenotyping and of which half enrolled into a weight-loss program over a three-month period. A standard oral glucose tolerance test (OGTT) served as dietary challenge test to identify changes in postprandial metabolite profiles. Despite classified as healthy according to WHO criteria, two discrete clusters (A and B) were identified based on the postprandial glucose profiles with a balanced distribution of volunteers based on gender and other measures. Cluster A individuals displayed 26% higher postprandial glucose levels, delayed glucose clearance and increased fasting plasma concentrations of more than 20 known biomarkers of insulin resistance and diabetes previously identified in large cohort studies. The volunteers identified by canonical postprandial responses that form cluster A may be called pre-pre-diabetics and defined as “at risk” for development of insulin resistance. Moreover, postprandial changes in selected fatty acids and complex lipids, bile acids, amino acids, acylcarnitines and sugars like mannose revealed marked differences in the responses seen in cluster A and cluster B individuals that sustained over the entire challenge test period of 240 min. Almost all metabolites, including glucose and insulin, returned to baseline values within this timeframe, except a variety of amino acids and here those that have been linked to diabetes development. Analysis of the corresponding metabolite profile in a fasting blood sample may therefore allow for early identification of these subjects at risk for insulin resistance without the need to undergo an OGTT
    corecore