Chemistry

Elsevier Editorial System(tm) for Marine

Manuscript Draft

Manuscript Number: MARCHE-D-16-00006R2

Title: Submarine groundwater discharge: a significant source of dissolved trace metals to the North Western Mediterranean Sea

Article Type: Research Paper

Keywords: submarine groundwater discharge (SGD); trace metals; micronutrients; Mediterranean Sea

Corresponding Author: Mrs. Giada Trezzi, M.D.

Corresponding Author's Institution: Universitat Autònoma de Barcelona

First Author: Giada Trezzi, M.D.

Order of Authors: Giada Trezzi, M.D.; Jordi Garcia-Orellana; Valentí Rodellas; Juan Santos-Echeandia; Antonio Tovar-Sánchez; Ester Garcia-Solsona; Pere Masqué

Abstract: Bioactive trace metals play a significant role as micronutrients in the ocean and therefore it is important to evaluate their sources. Submarine Groundwater Discharge (SGD) has been recognized as an input of trace metals to the coastal sea. Here, we investigated the significance of SGD as a source of dissolved trace metals (dTM) to the coastal sea in a regional area such as the North Western (NW) Mediterranean Sea. We analyzed dTM concentrations in SGD end-members and incorporate data on SGD dTM concentrations and water flows reported in previous studies carried out in this area, to estimate the following ranges of SGD-driven dTM fluxes (in 106 mol y-1): Cd: 0.0007 - 0.03, Co: 0.004 -0.11, Cu: 0.09 - 1.9, Fe: 1.8 - 29, Ni: 0.09 - 1.9, Pb: 0.002 -0.06, Zn: 0.38 - 12. These fluxes were compared to dTM fluxes from riverine discharge and atmospheric deposition, demonstrating that SGD is a major source of dTM to the NW Mediterranean Sea. Whilst riverine inputs are limited to the surrounding of river mouths and atmospheric fluxes are distributed throughout the whole basin mainly during sporadic depositional events, SGD represents a permanent, albeit seasonally variable, source of metals to most of the coastal areas. SGD-driven dTM inputs may be even more significant, in relative terms, in other coastal regions of the Mediterranean Sea where rivers are scarce, as it is the case of the African coast and many islands. This study highlights the relevance of SGD as a source of dTM to the Mediterranean Sea and the need of its consideration in the calculation of metal budgets in the basin and in the investigation of biogeochemical cycles in coastal areas.

Dear Prof -Hein de Baar,

Please, find enclosed the revised version of the manuscript written by G. Trezzi, J. Garcia-Orellana, V. Rodellas, J. Santos-Echeandia, A. Tovar-Sánchez, E. Garcia-Solsona, and P. Masqué, entitled "Submarine groundwater discharge: a significant source of dissolved trace metals to the North Western Mediterranean Sea" (Ref. # MARCHE-D-16-00006R1).

We think that this new version of the manuscript has been improved by addressing the reviewers' comments and we would like to thank the reviewers for their suggestions.

As recommended by the reviewers, we have expanded the discussion about differences in dissolved metal concentrations between karstic and detrital SGD and we have added details in the manuscript about the uncertainty in the selection of SGD end-members and the calculation of SGD trace metal fluxes using these end-members.

We have also paid attention to the minor comments done by the reviewers, introducing the appropriate corrections in the manuscript.

The responses to the reviewers' comments and the revised manuscript have been uploaded. Two versions of the manuscript have been sent: i) the revised manuscript with all the changes marked; ii) the revised manuscript where all the changes have been accepted for facilitating the reading.

Yours faithfully, Giada Trezzi Institut de Ciència i Tecnologia Ambientals. Universitat Autònoma de Barcelona 08193 Bellaterra. Spain Email: <u>Giada.Trezzi@uab.cat</u> <u>giada.trezzi@gmail.com</u> Tel: +34 93 581 11 91

Giada Trezzi Institut de Ciència i Tecnologia Ambientals Edifici Ciències (C3-350) Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès (Catalunya) Telf: (+34) 93-586-1191 e-mail: Giada.Trezzi@uab.cat giada.trezzi@gmail.com

Prof -Hein de Baar, Associated Editor of Marine Chemistry Barcelona, July 29th, 2016

Re: Revision of manuscript Ref. # MARCHE-D-16-00006R1 by Trezzi et al.

Please find below the responses to the comments made by the reviewers. We have carefully read the corrections and suggestions provided and improved the manuscript accordingly. Concerning the main comment made by Reviewer 1, we have tried to examine in depth the differences in dissolved metal concentrations in karstic and detrital SGD. Because of the paucity of data and studies on this matter, we can provide only the possible interpretations explained now in the manuscript. Nevertheless, we believe that this is not the central point of the manuscript and that the information provided on the comparison of the different continental fluxes of dissolved trace metals to the NW Mediterranean Sea are not affected by these interpretations.

COMMENTS MADE BY REVIEWER 1

General comments:

Following the first round of reviews, the authors made an effort to answer both reviewers comments, included the suggested references and provide a better explanation on the determination of fluxes.

However, I am still not convinced by the discussion regarding differences in trace metal concentrations between karstic and detrital systems (lines 291-307). Compared to the first version, the authors yet provide more details about the ranges of concentrations but do not really improve the discussion. Same sentences are repeated (e.g. l.298-299: "In karstic systems, groundwater flows rapidly through fractures and conduits ...". The

authors argue that higher concentrations of Cu, Ni and Co in detrital systems are due to the fact that these elements are crustal derived, and were longer in interaction with the sediment in comparison to the karstic systems. However, Fe, which is also a well-known crustal-derived element, shows 1.5 times less concentrations in detrital, and I would like to see a real discussion.

Answer: We have now improved the discussion about differences in trace metal concentrations between karstic and detrital systems, providing possible interpretations for the higher concentrations of Co, Cu and Ni in detrital SGD and the lack of this enrichment for the other trace metals (Cd, Fe, Pb and Zn). The paragraph about this discussion (lines 274 - 310) reads as: "There are two possible main explanations for these differences in dTM concentrations between karstic and detrital SGD. The different geological matrix of the karstic and detrital aquifers can contribute differently to the chemical composition of the interacting groundwater; while karstic systems are composed predominantly by carbonate minerals, detrital systems can be characterized by different lithologies and a consequent larger variability of minerals. Secondly, the geochemical reactions that occur in the subterranean estuary, before groundwater discharges into the coastal sea, largely affect solute concentrations in SGD. In karstic systems, infiltrated groundwater can be rapidly transferred to the coastal sea due to the presence of underground fractures and preferential pathways (Garcia-Solsona et al., 2010b; Gonneea et al., 2014; Tovar-Sánchez et al., 2014b). Thus, the SGD discharging into the coastal sea through coastal springs is generally oxygenated and characterized by a limited interaction with the geological matrix of the aquifer. Contrary, detrital SGD flows across the permeable sediments of the coastal aquifers, where it mixes with recirculated seawater before discharging into the sea. Detrital SGD is thus subjected to several geochemical transformations such as redox-controlled solubility, adsorption on organic matter and/or on Fe and Mn oxides, release from these oxides and desorption

from sediments (Charette and Sholkovitz, 2006). Co and Ni are redox-sensitive elements controlled by Mn geochemistry in porewater of coastal and shelf sediments (Beck et al., 2007, 2010; Santos-Echeandia et al., 2009). The higher concentrations of Co and Ni in detrital SGD samples with respect to the karstic ones may be related to their release from Mn oxides during the diagenetic remobilization of Mn (Beck et al., 2010; Santos-Echeandia et al., 2009). On the other hand, Cu is strongly associated to the organic matter (Du Laing et al., 2009; Santos-Echeandia et al., 2009; Shaw et al., 1990), which is commonly more abundant in detrital systems than in the karstic ones. This may explain the higher concentration of Cu in detrital SGD. The comparable concentrations of dissolved Fe between karstic and detrital SGD may be due to the oxygenated conditions of karstic SGD and to the precipitation of Fe, with the formation of Fe oxides, when recirculated seawater mixes with groundwater in detrital systems (Charette and Sholkovitz, 2006, 2002; Windom et al., 2006). Finally, for Cd, Pb and Zn, the generally comparable ranges of concentrations in karstic and detrital SGD may be ascribed to their lower redox-sensitivity (for Pb and Zn) (Santos-Echeandia et al., 2009), to their lower association with the organic matter (for Cd, Pb and Zn) (Roux et al., 1998; Santos-Echeandia et al., 2009) or to their removal from the solution due to the presence of the so-called Fe-curtain (for Cd and Zn) (Charette and Sholkovitz, 2006, 2002; Trezzi et al., 2016). These properties may prevent the detrital SGD to get distinctly more enriched in Cd, Fe, Pb and Zn with respect to karstic SGD."

Specific comments:

Rev. 1: Highlights: given the fact that median riverine metal fluxes are 2 to 7 times higher than estimated SGD fluxes, and that atmospheric fluxes are also much higher than SGD fluxes, I think the third statement "SGD is a major source of dissolved metals to the coastal NW mediterranean" should be removed

Answer 1: In our opinion, this highlight should remain because SGD is comparable to atmospheric fluxes when normalizing SGD and atmospheric dissolved trace metal fluxes to the NW Mediterranean Sea for the relative areas of influence, as it is explained in lines 429 - 451 (See Figure 6). This work demonstrated that SGD is, together with atmospheric deposition, the most important source of dissolved trace metals to the coastal sea out of the areas of influence of rivers (river plumes). Thus, SGD is a major source of dissolved trace metals to the coastal sea in the NW Mediterranean Sea. This fact does not mean that SGD fluxes are higher than riverine and atmospheric fluxes in Figure 4.

Rev. 2: l. 208: say which samples are lower than the limit of detection. "Some samples" is not precise enough.

Answer 2: Done

Rev. 3: l. 451. I think the authors could calculate the same inputs considering a distance of 2km since their statement in line 445. This would provide a range of fluxes rather than an upper limit for Cu, Fe, Ni and Zn.

Answer 3:

We thank the reviewer for the comment. However, we think that the approach chosen in the previous version of the manuscript is the most appropriate one. Indeed, as it is stated in lines 433 - 440, several studies (Gonneea et al., 2014; Mejías et al., 2012; Moore, 2003; Rodellas et al., 2014; Trezzi et al., 2016; Windom et al., 2006) showed that the maximum distance of coastal seawater where it is generally recognizable SGD by using Ra isotopes or salinity as tracers is 2-3 km offshore. However, Cu, Fe, Ni and Zn can be removed from the water column within this distance, because of the biological uptake or the adsorption onto inorganic particles. It is difficult to establish the distance offshore affected by SGD-driven dissolved metal fluxes, in particular because of the lack in published studies of complementary investigations on processes affecting the distribution of trace metals in the water column of 3 km, supplied by salinity and Ra isotopes, for the calculation of area-normalized SGD metal fluxes, rather than a range of

distances. In this way we are considering a conservative estimation of the significance of SGD for Cu, Ni, Zn and Fe. If a shorter distance offshore had been used for the calculation, the relative significance of SGD as source of dissolved trace metals to the coastal sea with respect to the atmospheric deposition would have been higher than what highlighted in the manuscript.

COMMENTS MADE BY REVIEWER 2

General comments:

Second review of "Submarine groundwater discharge: a significant source of dissolved trace metals to the North Western Mediterranean Sea" by Trezzi et al. (Marine Chemistry)

I carefully read the authors' response to my comments and inspected the revised manuscript. Thanks to the authors' explanations and modifications I am now ready to believe that submarine groundwater discharge (SGD) may represent a significant source of trace metals to the north-western Mediterranean Sea (and even more so to the southern and eastern Mediterranean Sea).

I have a number of remaining points of criticism which should be addressed prior to publication.

In my first review I noted that the term end member is somewhat misleading for samples with salinities between 0.2 and 36 since dissolved-particulate interaction likely modify these concentrations upon mixing of seawater and groundwater. I understand that this complication is inherent to all SGD studies. However, given the authors' far-reaching interpretation and comparison with river- and dust-related fluxes, I feel that a more thorough treatment/discussion of this uncertainty in the paper (rather than in the response letter alone) would be in order.

Answer: We have now improved this part of the manuscript including a more detailed discussion of this point. Thus, this discussion reads as (lines 366 – 378 and 387 - 393): "Trace metal inputs through SGD are conditioned by the multiple and complex processes occurring during the transport through the sediments and/or aquifer, which

can affect the dTM concentrations of SGD. Indeed, the selection of appropriate SGD end-members is one of the most challenging points in the assessment of SGD-driven metal fluxes to the ocean. The SGD end-members collected in this work were certainly representative of the water effectively discharging into the sea in the case of the coastal karstic springs. For detrital systems, the most real SGD end-member was determined by collecting several SGD samples of different salinities (fresh and brackish groundwater and recirculated seawater) and by including literature data of dTM already considered as representative of the SGD end-members by the respective authors. This approach permits to obtain a first approximation of SGD-driven dTM fluxes, whose magnitude can be compared to riverine discharge and atmospheric deposition, with the aim of evaluating the relevance that SGD can have in the NW Mediterranean Sea." and "Notice that the repeated sampling of two SGD end-members, collected twice and three times (Argentona and Garbí, respectively), showed a minimum variability of the dTM concentrations compared to the range of concentrations reported for groundwater samples. Thus, even considering temporal variability of SGD, the magnitude of the calculated SGD-driven dTM fluxes can be still compared to continental inputs of dTM via riverine discharge and atmospheric deposition."

Specific comments:

Rev.1: Line 48: 'off' the African coast.

Answer 1: We think that "of" is the correct preposition for the meaning of the sentence.

Rev. 2: Line 142: Why not adding the explanation regarding the origin of the water in the channel that was given in the response letter?

Answer 2: Done.

Rev. 3 *Line* 182: *I* guess you are referring to 'diffuse' rather than 'diffusive' flows.

Answer 3: Corrected.

Rev. 4: Lne 185: Based on what method (228Ra mass balance). Please mention.

Answer 4: Done: We have added "by using Ra isotopes and ²²²Rn as tracers of the process" (lines 177 - 178).

Rev. 5: Line 301-307: Please provide citations or a more detailed reasoning for these interpretations. Note that not only Cd and Fe have been described to undergo flocculation in the salinity gradient but also Cu, Ni and Co (Sholkowitz 1987, The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing, EPSL 1, 77-86).

Answer 5: On the base of this comment and the comments provided by Reviewer 1, we have now provided more detailed reasons for our interpretations (lines 274 - 310): "There are two possible main explanations for these differences in dTM concentrations between karstic and detrital SGD. The different geological matrix of the karstic and detrital aquifers can contribute differently to the chemical composition of the interacting groundwater; while karstic systems are composed predominantly by carbonate minerals, detrital systems can be characterized by different lithologies and a consequent larger variability of minerals. Secondly, the geochemical reactions that occur in the subterranean estuary, before groundwater discharges into the coastal sea, largely affect solute concentrations in SGD. In karstic systems, infiltrated groundwater can be rapidly transferred to the coastal sea due to the presence of underground fractures and preferential pathways (Garcia-Solsona et al., 2010b; Gonneea et al., 2014; Tovar-Sánchez et al., 2014b). Thus, the SGD discharging into the coastal sea through coastal springs is generally oxygenated and characterized by a limited interaction with the

geological matrix of the aquifer. Contrary, detrital SGD flows across the permeable sediments of the coastal aquifers, where it mixes with recirculated seawater before discharging into the sea. Detrital SGD is thus subjected to several geochemical transformations such as redox-controlled solubility, adsorption on organic matter and/or on Fe and Mn oxides, release from these oxides and desorption from sediments (Charette and Sholkovitz, 2006). Co and Ni are redox-sensitive elements controlled by Mn geochemistry in porewater of coastal and shelf sediments (Beck et al., 2007, 2010; Santos-Echeandia et al., 2009). The higher concentrations of Co and Ni in detrital SGD samples with respect to the karstic ones may be related to their release from Mn oxides during the diagenetic remobilization of Mn (Beck et al., 2010; Santos-Echeandia et al., 2009). On the other hand, Cu is strongly associated to the organic matter (Du Laing et al., 2009; Santos-Echeandia et al., 2009; Shaw et al., 1990), which is commonly more abundant in detrital systems than in the karstic ones. This may explain the higher concentration of Cu in detrital SGD. The comparable concentrations of dissolved Fe between karstic and detrital SGD may be due to the oxygenated conditions of karstic SGD and to the precipitation of Fe, with the formation of Fe oxides, when recirculated seawater mixes with groundwater in detrital systems (Charette and Sholkovitz, 2006, 2002; Windom et al., 2006). Finally, for Cd, Pb and Zn, the generally comparable ranges of concentrations in karstic and detrital SGD may be ascribed to their lower redox-sensitivity (for Pb and Zn) (Santos-Echeandia et al., 2009), to their lower association with the organic matter (for Cd, Pb and Zn) (Roux et al., 1998; Santos-Echeandia et al., 2009) or to their removal from the solution due to the presence of the so-called Fe-curtain (for Cd and Zn) (Charette and Sholkovitz, 2006, 2002; Trezzi et al., 2016). These properties may prevent the detrital SGD to get distinctly more enriched in Cd, Fe, Pb and Zn with respect to karstic SGD."

Rev. 6: Line 357-359: It would make sense to assign a mechanism, reasoning or citation to this general statement (regarding pH/redox/etc.).

Answer 6: Done. We have now modified the sentence in this way: "These differences may be related to the distinctive environments of coastal aquifers and rivers, with steep redox gradients in subterranean estuaries and the presence of microbes that can affect the speciation and mobility of trace metals (Knee and Paytan, 2011; O'Connor et al., 2015)."

Rev. 7: Generally speaking, the added discussion regarding differential trace metal behaviour in the context of SGD (as rightly requested by the other reviewer) does not seem very motivated or convincing to me.

Answer 7: We have now improved this discussion (see Answer 5)

Rev. 8: Line 332: Exchange 'included in' by 'within'

Answer 8: Done.

Rev. 9: Line 482: 'variability', not 'variable'

Answer 9: Done.

Rev. 10: Line 505: Add 'of' after paucity

Answer 10: Done. We have now rewritten the sentence, so that it results clearer: "the paucity of data on dTM concentrations of SGD end-members of the South Western and Eastern Mediterranean basins and the difficulty to obtain these data" (lines 494 - 496).

Rev. 11: Line 564: 'on' islands.

Answer 11: We think that the preposition "in" is more correct for the meaning of the sentence.

	1	Submarine groundwater discharge: a significant source of dissolved
1	2	trace metals to the North Western Mediterranean Sea
3	3	
4 5	4 5	Giada Trezzi ^{* 1} , Jordi Garcia-Orellana ^{1,2} , Valentí Rodellas ^{1,3} , Juan Santos-Echeandia ⁴ Antonio Toyan Sánch ez ^{5,6} Esten Canoia Soloona ⁷ Dono Magauá ^{1,2,8,9}
6	5 6	, Anionio Tovar-Sanchez, Ester Garcia-Solsona, Pere Masque
7	7	¹ Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Spain
o 9	8	² Departament de Física, Universitat Autònoma de Barcelona, Spain ³ CERECE Air Masseille Universitá CNRS, IRD, Coll France, Air, an Brayance, France
10	10	⁴ Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Spain
12	11 12	⁵ Instituto de Ciencias Marinas de Andalucía (CSIC), Spain
13	13	⁷ Departament de Dinàmica de la Terra I de l'Oceà, Universitat de Barcelona, Spain
$14 \\ 15$	14 15	⁸ School of Natural Sciences and Centre for Marine Ecosystems Research, Edith Cowan University,
16	15	⁹ Oceans Institute and School of Physics, The University of Western Australia, Australia
18	17	
19 20	18 10	
20 21	1)	
22 23	20	* Giada Trezzi
24	21	Institut de Ciència i Tecnologia Ambientals.
25 26	22	Universitat Autònoma de Barcelona
27 28	23	08193 Bellaterra. Spain
29 30	24	Email: Giada.Trezzi@uab.catTel: +34 93 581 11 91
31 20	25	
32 33 34	26	Key words: submarine groundwater discharge (SGD), trace metals, micronutrients,
35 36	27	Mediterranean Sea, rivers, atmospheric deposition
37		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		
57		
58		
59 60		

Bioactive trace metals play a significant role as micronutrients in the ocean and therefore it is important to evaluate their sources. Submarine Groundwater Discharge (SGD) has been recognized as an input of trace metals to the coastal sea. Here, we investigated the significance of SGD as a source of dissolved trace metals (dTM) to the coastal sea in a regional area such as the North Western (NW) Mediterranean Sea. We analyzed dTM concentrations in SGD end-members and incorporate data on SGD dTM concentrations and water flows reported in previous studies carried out in this area, to estimate the following ranges of SGD-driven dTM fluxes (in $10^6 \text{ mol } \text{y}^{-1}$): Cd: 0.0007 -0.03, Co: 0.004 -0.11, Cu: 0.09 - 1.9, Fe: 1.8 - 29, Ni: 0.09 - 1.9, Pb: 0.002 - 0.06, Zn: 0.38 - 12. These fluxes were compared to dTM fluxes from riverine discharge and atmospheric deposition, demonstrating that SGD is a major source of dTM to the NW Mediterranean Sea. Whilst riverine inputs are limited to the surrounding of river mouths and atmospheric fluxes are distributed throughout the whole basin mainly during sporadic depositional events, SGD represents a permanent, albeit seasonally variable, source of metals to most of the coastal areas. SGD-driven dTM inputs may be even more significant, in relative terms, in other coastal regions of the Mediterranean Sea where rivers are scarce, as it is the case of the African coast and many islands. This study highlights the relevance of SGD as a source of dTM to the Mediterranean Sea and the need of its consideration in the calculation of metal budgets in the basin and in the investigation of biogeochemical cycles in coastal areas.

28 Abstract

1 Introduction

54	The availability of bioactive trace metals (e.g. Fe, Mn, Co, Ni, Cu, Zn and Cd) plays an
55	important role in supporting primary productivity in the oceans (Bruland et al., 1991;
56	Morel and Price, 2003; Sunda, 2012). Understanding the biogeochemical cycling of
57	these micronutrients requires a detailed knowledge of their diverse sources and sinks.
58	The main continental sources of trace metals to the ocean are riverine discharge (e.g.
59	Bewers and Yeats, 1989; Jeandel and Oelkers, 2015; Martin and Whitfield, 1983;
60	Oelkers et al., 2011), atmospheric deposition (e.g. Bowie et al., 2002; Duce et al., 1991;
61	Jickells, 1995; Mackey et al., 2012; Mahowald et al., 2005), benthic fluxes from
62	sediments (e.g. Elrod et al., 2004; Jeandel et al., 2011) and submarine groundwater
63	discharge (SGD), although the latter has received attention only recently (e.g. Beck et
64	al., 2007, 2009; Charette and Buesseler, 2004; Windom et al., 2006). SGD includes both
65	fresh meteoric groundwater and recirculated seawater through permeable sediments of
66	the coastal aquifer. Indeed, the mixing interface between fresh and salty water is a
67	chemical reaction zone called the subterranean estuary, where groundwater can become
68	enriched or depleted in chemical compounds before discharging into the sea (Moore,
69	1999). The chemical composition of SGD is influenced by several factors, such as the
70	geological matrix and the geochemical conditions of the coastal aquifers (Charette et al.,
71	2005; Mcallister et al., 2015; Santos et al., 2012), the potential impact of human
72	activities (Beck et al., 2009; de Sieyes et al., 2008; Trezzi et al., 2016) and the type of
73	discharge (e.g. karstic or detrital) (Tovar-Sánchez et al., 2014b).
74	
75	Globally SGD has been estimated to be 3 to 4 times higher than riverine discharge into
76	the oceans (Kwon et al., 2014). In the Mediterranean Sea, a semi-enclosed oligotrophic
77	basin, SGD is comparable or even larger (up to 16 times) than the riverine water flow
78	(Rodellas et al., 2015a). In this basin, the role of SGD in biogeochemical cycles is also

prominent since the estimated SGD-driven macronutrient fluxes (DIN, DIP and DSi)
are comparable or even higher than the riverine and atmospheric fluxes (Rodellas et al.,
2015a). The relevance of SGD in delivering dissolved trace metals (dTM) to the
Mediterranean Sea has been highlighted in some local areas, characterized by the
absence of riverine discharge (Rodellas et al., 2014; Tovar-Sánchez et al., 2014b; Trezzi
et al., 2016).

The aim of this study is to quantify SGD-driven dTM fluxes at regional scale and evaluate their significance. We determine these fluxes in the North Western (NW) Mediterranean Sea and compare them to other external sources (i.e. riverine discharge and atmospheric deposition). This area was considered an appropriate study site for conducting such a comparison for three main reasons: 1) the existence of several studies reporting local estimations of SGD flows that can be used to obtain a reliable regional estimate of SGD-driven dTM fluxes (i.e., Baudron et al., 2015; Garcia-Solsona et al., 2010a, 2010b; Mejías et al., 2012; Ollivier et al., 2008; Rodellas et al., 2015b, 2014, 2012; Stieglitz et al., 2013; Tovar-Sánchez et al., 2014b; Trezzi et al., 2016); 2) the large riverine discharge in this area compared with most zones of the Mediterranean basin (Ludwig et al., 2009); 3) the influence of atmospheric deposition originating from Europe and the Saharan region (Guerzoni et al., 1999; Guieu et al., 1997).

98 2 Methodology

100 2.1 The NW Mediterranean Sea

102 The Mediterranean Sea is a semi-enclosed basin connected to the Atlantic Ocean

103 through the Strait of Gibraltar, characterized by a net export of nutrients to the Atlantic

Ocean, that leads to oligotrophic conditions in the whole basin (Béthoux et al., 1998). Climate conditions of the Mediterranean Sea generally consist of dry summers and rainy autumns and winters, with larger mean annual precipitation in the north and western parts of the basin. The study area comprises the NW Mediterranean zone (Eastern Spanish coast, including the Balearic Islands, and French Mediterranean coast, up to Marseille city), encompassing a coastline of about 3,500 km and a surface area of about 180,000 km² (Figure 1). The Rhone and the Ebro are the main rivers in this area, representing more than the 70% of the total riverine discharge to the Western Mediterranean Sea, with mean water flows of $54 \cdot 10^9$ and $13 \cdot 10^9$ m³ y⁻¹, respectively (Ludwig et al., 2009). Groundwater inputs occur via both detrital and karstified coastal aquifers. Fractured karstified carbonated aquifers constitute a large portion (about the 40%) of the French and Spanish coasts, including the Balearic Islands (Bakalowicz, 2015, 1999; Instituto Geologico Minero de España (IGME), 1986). 2.2 Sampling Groundwater samples representative of the water discharging into the sea (i.e. SGD end-members) were collected between November 2013 and June 2015 at several locations along the Spanish and French Mediterranean coasts: 10 samples were collected from karstic systems and 8 from detrital systems (Figure 1; Table 1). The karstic waters corresponded to 3 different coastal carbonate aquifers and were collected mostly from flowing coastal springs associated with fractures (Garbí, Suís, Badum, Font Centre, Font South, Estramar, La Palme). One of these springs (Garbí, located close to the Ebro delta) was sampled three times (December 2013; July 2014;

May 2015) in order to evaluate the variability in metal concentrations of this source. Groundwater flowing through detrital aquifers was sampled at 7 sites along the Spanish coast. Five of these end-members were obtained in beaches presumably characterized by the flow of fresh groundwater to the sea, from a manual piezometer placed down to the depth where groundwater seeping through the sand was found (Empuriabrava, La Fosca North, La Fosca South, Arenys and Sitges); one was collected in the channel connecting a coastal marshland to the sea (Peníscola), which is representative of the groundwater converging into the coastal wetland (Rodellas et al., 2012; Zarroca et al., 2014); the other two samples were collected from a coastal piezometer, sampled twice after a rainy period (Argentona).

For each sample, 125 mL of water were directly collected following trace metal clean
techniques (Tovar-Sánchez, 2012). Water was pumped through an acid-clean Teflon
tube using a peristaltic pump, filtered with a 0.2 μm SuporCap filter and stored in acidcleaned plastic bottles. Samples were then acidified to pH < 2 with trace metal grade
HCl acid. At each sampling point, salinity was measured with an YSI 556 handheld
probe.

147 2.3 Analysis

Concentrations of dTM (Cd, Co, Cu, Fe, Ni, Pb, Zn) in groundwater samples were
determined by stripping voltammetry using a Metrohm VA-797 Computrace and a
Metrohm 663 VA. These instruments were equipped with a hanging mercury drop
electrode as the working electrode, Ag/AgCl as the reference electrode and a Pt wire as
the counter electrode. Before the determination, water samples were UV-digested for 3

h in a UV digestor equipped with a high-pressure mercury lamp at 200 W (Achterberg and Van den Berg, 1994). Two different analytical methods were employed depending on the metal to be determined. Anodic stripping voltammetry was used for the determination of Zn, Pb and Cd (Gardiner and Stiff, 1974). Adsorptive cathodic stripping voltammetry with mixed ligands was utilized for Fe (Obata and Van den Berg, 2001) and Cu, Ni and Co (Santos-Echeandía, 2011). Each sample was analyzed at least two times to check the precision of the measurement. The relative standard deviation was below 11%. The accuracy of the analytical procedure was assessed by the analyses of CASS 4 (NRC-CNRC), a nearshore seawater certified reference material (CRM). Results for CASS 4 differed within 10% of the certified values for Zn, Cu, Fe, Ni and Cd and within 17% for Pb. The detection limits were 0.04 nmol L^{-1} for Cd, 0.06 nmol L^{-1} ¹ for Co, 0.31 nmol L⁻¹ for Cu, 3.9 nmol L⁻¹ for Fe, 0.12 nmol L⁻¹ for Ni, 0.04 nmol L⁻¹ for Pb and 0.85 nmol L^{-1} for Zn. Results were corrected for blank analyses. 2.4 Calculations of continental trace metal fluxes Metal concentrations in SGD end-members and magnitudes of SGD water flows to the NW Mediterranean Sea are required in order to quantify the SGD-driven dTM fluxes to the study area. We differentiated karstic from detrital SGD systems, because the hydrogeological setting of the aquifer and the discharge type (i.e. rapid discharges through fractures in karstified carbonates and slow diffuse diffusive flows through permeable sediments in detrital aquifers) can affect the chemical composition of SGD (Tovar-Sánchez et al., 2014b). SGD water flows into the NW Mediterranean Sea have been quantified by using Ra isotopes and ²²²Rn as tracers of the process in several locations of the Spanish and

French coasts in the last decade, both in detrital contexts (Baudron et al., 2015; Ollivier et al., 2008; Rodellas et al., 2014, 2012; Tovar-Sánchez et al., 2014b; Trezzi et al., 2016) and in karstified carbonate formations (Garcia-Solsona et al., 2010a, 2010b; Mejías et al., 2012; Rodellas et al., 2015b; Stieglitz et al., 2013; Tovar-Sánchez et al., 2014b) (Supporting Information, Appendix A). We used SGD estimations normalized to the shoreline length of the different sites to estimate SGD-driven dTM fluxes. When the studies focused on specific sites did not report shore-normalized SGD flows, we used the values reported in Rodellas et al. (2015a), where the SGD flows were divided by the approximate shore length or the bay mouth width of the study area. We also applied this methodology to obtain shore-normalized SGD flows for those locations not included in Rodellas et al. (2015a). We considered-the median values and the ranges between the 1st and the 3rd quartiles of the data set as the best representation of shore-normalized water flows in karstic and detrital SGD systems (Supporting Information, Appendix A).

Trace metal concentrations in SGD end-members have been reported in the literature only for few sites in the NW Mediterranean Sea (Rodellas et al., 2014; Tovar-Sánchez et al., 2014b; Trezzi et al., 2016). Therefore, we integrated these data with additional SGD end-members of different salinities collected along the Spanish and French Mediterranean coasts (Table 1). As for the water flow estimations, the median values and the ranges between the 1st and the 3rd quartiles were considered as the best representation of metal concentrations in karstic and detrital SGD systems. When dTM concentrations measured in water samples were lower than the limits of detection (which was the case for Cd (samples Garbí, Suís, badum, peníscola and Arenys), for Co (samples Garbí) and for Pb (samples Garbí and Font Centre) in some samples), the limit of detection itself was used in the calculations, leading to an upper limit in the

estimation of the flux.

205 Dissolved metal concentrations in karstic and detrital SGD end-members were 206 multiplied by the respective SGD water flows. Karstic and detrital SGD-driven dTM 207 fluxes to the NW Mediterranean Sea were calculated separately, classifying 40% of the 208 coastline as karstic systems and the remaining 60% as detrital. The sum of these metal 209 fluxes was considered as the total contribution of SGD to the study area. Coastline-210 normalized karstic and detrital SGD dTM fluxes were multiplied by the corresponding 211 shore length (3,500 km) in order to obtain values in mol y⁻¹.

Dissolved trace metal concentrations for the main rivers of the NW Mediterranean Sea (Rhone and Ebro) reported in the literature (Elbaz-Poulichet et al., 1996, 1989; Guieu et al., 1997, 1993; Ollivier et al., 2011; UNEP/MAP/MED POL, 2003) were used for the calculation of fluxes of dTM associated to riverine discharge (Supporting Information, Appendix B). These rivers were considered the most representative rivers of the area, as they account for a large portion of the total riverine discharge (Guieu et al., 1997). The median metal concentrations and the ranges between the 1st and the 3rd quartiles of the data set were considered as the best representation of dissolved concentrations of Cd, Cu, Ni, Pb and Zn in the river end-member. For Co and Fe, dissolved concentrations in the Rhone and the Ebro Rivers are reported only in a limited number of works (Elbaz-Poulichet et al., 1989; Guieu et al., 1997, 1993), so that we calculated the mean of the concentrations of these metals and the relative standard deviations. Dissolved metal concentrations were multiplied by the sum of the water flows from rivers in the study area $(71 \cdot 10^9 \text{ m}^3 \text{ v}^{-1})$ (UNEP/MAP/MED POL, 2003) in order to obtain the fluxes of dTM through rivers into the NW Mediterranean Sea.

229	Dissolved trace metal fluxes from the atmospheric deposition were estimated from
230	literature data for the combination of wet and dry deposition metal fluxes to the
231	Mediterranean Sea (Bonnet and Guieu, 2006; Chester et al., 1999; Guerzoni et al., 1999;
232	Guieu et al., 2010, 1997, 1993; Migon et al., 1997, 1991; Ridame et al., 1999; Sandroni
233	and Migon, 2002) (Supplementary Information, Appendix C). When values of dTM
234	fluxes were not directly reported, we calculated them from data on the total fraction of
235	metals (dissolved + particulate), by using the percentages of partitioning between the
236	different fractions provided by Guieu et al. (1997). Mean values of atmospheric dTM
237	fluxes (in mol km ⁻² y ⁻¹) for each literature work are reported in the Supplementary
238	Information, Appendix C. The median values and the ranges between the 1^{st} and the 3^{rd}
239	quartiles of the data set were considered as the best representation of atmospheric
240	dissolved fluxes of Cd, Cu, Fe, Ni, Pb and Zn to the NW Mediterranean Sea. For Co,
241	data of atmospheric fluxes are reported only in a limited number of works (Chester et
242	al., 1999; Guieu et al., 1997, 1993), so that we used the mean dissolved atmospheric
243	fluxes and the relative standard deviations. The obtained metal atmospheric fluxes were
244	multiplied by the surface of the study area (180,000 km^2) to obtain atmospheric metal
245	fluxes in mol y ⁻¹ . For trace metals of anthropogenic origin such as Cd, Pb and Zn, the
246	calculated atmospheric fluxes represent an upper limit, due to the decrease of their
247	emission in the atmosphere since the second half of the 1980s (Heimbürger et al., 2010).
248	
249	3 Results and Discussion
250	
251	3.1 Metal characterization of SGD
252	

SGD end-members spanned a wide range of salinities: karstic SGD had salinities
ranging between 0.3 and 9.7, whereas detrital SGD samples were in the range of 0.2–36
(Table 1). The higher variability in salinity for detrital SGD with respect to karstic SGD
is related to the intrusion of recirculated seawater through permeable beach sediments
(Moore, 1999).

The variability of trace metal concentrations in SGD systems depends on the geological composition of the coastal aquifers, the possible groundwater contamination through anthropogenic activities (Beck et al., 2009; Trezzi et al., 2016), the residence time of groundwater in the aquifers and the mixing of freshwater and seawater in the subterranean estuary (Beck et al., 2007; Moore, 1999). In karstic SGD, the ranges of dTM concentrations (in nmol L^{-1}) were <0.04 – 3.1 for Cd, <0.06 – 4.0 for Co, 0.68 – 24 for Cu, 18 - 840 for Fe, 1.6 - 43 for Ni, <0.04 - 2.1 for Pb and 7.2 - 300 for Zn. In detrital SGD, the ranges of dTM concentrations (in nmol L^{-1}) were <0.04 - 14 for Cd, 0.10 - 6.9 for Co, 1.7 - 160 for Cu, 44 - 460 for Fe, 4.5 - 83 for Ni, 0.19 - 7.4 for Pb, and 13 – 2100 for Zn.

Figure 2 shows the comparison between metal concentrations in karstic and detrital SGD end-members, for which ranges between the 1^{st} and the 3^{rd} quartiles were reported. Detrital SGD was distinctively more enriched in Co, Cu and Ni than karstic SGD. For the other trace metals (Cd, Fe, Pb and Zn), the ranges of concentrations in karstic and detrital SGD were comparable, although the median values of Fe were higher in karstic SGD (up to 1.5 times) and the median values of Pb were higher in detrital SGD (up to 2.5 times). There are two possible main explanations for these differences in dTM concentrations between karstic and detrital SGD. The different geological matrix of the karstic and detrital aquifers can contribute differently to the chemical composition of the interacting groundwater; while karstic systems are composed predominantly by

carbonate minerals, detrital systems can be characterized by different lithologies and a consequent larger variability of minerals. Secondly, the geochemical reactions that occur in the subterranean estuary, before groundwater discharges into the coastal sea, largely affect solute concentrations in SGD. In karstic systems, infiltrated groundwater can be rapidly transferred to the coastal sea due to the presence of underground fractures and preferential pathways (Garcia-Solsona et al., 2010b; Gonneea et al., 2014; Tovar-Sánchez et al., 2014b). Thus, the SGD discharging into the coastal sea through coastal springs is generally oxygenated and characterized by a limited interaction with the geological matrix of the aquifer. Contrary, detrital SGD flows across the permeable sediments of the coastal aquifers, where it mixes with recirculated seawater before discharging into the sea. Detrital SGD is thus subjected to several geochemical transformations such as redox-controlled solubility, adsorption on organic matter and/or on Fe and Mn oxides, release from these oxides and desorption from sediments (Charette and Sholkovitz, 2006). Co and Ni are redox-sensitive elements controlled by Mn geochemistry in porewater of coastal and shelf sediments (Beck et al., 2007, 2010; Santos-Echeandia et al., 2009). The higher concentrations of Co and Ni in detrital SGD samples with respect to the karstic ones may be related to their release from Mn oxides during the diagenetic remobilization of Mn (Beck et al., 2010; Santos-Echeandia et al., 2009). On the other hand, Cu is strongly associated to the organic matter (Du Laing et al., 2009; Santos-Echeandia et al., 2009; Shaw et al., 1990), which is commonly more abundant in detrital systems than in the karstic ones. This may explain the higher concentration of Cu in detrital SGD. The comparable concentrations of dissolved Fe between karstic and detrital SGD may be due to the oxygenated conditions of karstic SGD and to the precipitation of Fe, with the formation of Fe oxides, when recirculated seawater mixes with groundwater in detrital systems (Charette and Sholkovitz, 2006,

2002; Windom et al., 2006). Finally, for Cd, Pb and Zn, the generally comparable ranges of concentrations in karstic and detrital SGD may be ascribed to their lower redox-sensitivity (for Pb and Zn) (Santos-Echeandia et al., 2009), to their lower association with the organic matter (for Cd, Pb and Zn) (Roux et al., 1998; Santos-Echeandia et al., 2009) or to their removal from the solution due to the presence of the so-called Fe-curtain (for Cd and Zn) (Charette and Sholkovitz, 2006, 2002; Trezzi et al., 2016). These properties may prevent the detrital SGD to get distinctly more enriched in Cd, Fe, Pb and Zn with respect to karstic SGD. Differences in metal concentrations between karstic and detrital SGD can be in part related to the type of water discharge itself. In karstic systems, groundwater flows rapidly through fractures and conduits and therefore the time for the interaction of groundwater with the aquifer matrix is lower in comparison with detrital systems

(Tovar-Sánchez et al., 2014b). Thus, the higher concentrations of Cu, Ni and Co in

detrital SGD samples with respect to the karstic ones could be related to the fact that

they are crustal-derived elements and become enriched in groundwater mainly due to

the interaction with the sediments of the aquifer. The generally comparable ranges of concentrations of Cd, Fe, Pb and Zn in karstic and detrital aquifers can indicate that these components may be removed from the solution when groundwater mixes with

recirculated seawater, in particular in detrital subterranean estuaries.

The karstic SGD end-member analysed in three different seasons (Garbí) displayed variability in dTM concentrations, in particular for Cd (< 0.04 - 0.49 nmol L⁻¹) and Fe $(35 - 840 \text{ nmol } \text{L}^{-1})$. The detrital SGD system sampled twice in 10 days after a rain event (Argentona) also showed some variability in metal concentrations for Cd, Cu, Ni and Zn, in addition to a variation in salinity (Table 1). This temporal variability of Garbí

and Argentona samples illustrated the difficulty on establishing appropriate SGD end-members, which is traditionally one of the most significant uncertainties in the investigation of SGD processes. The different dTM concentrations showed by Garbí and Argentona samples were generally within included in the ranges between minimum and maximum values measured in the other SGD end-members. Therefore, we assume that the temporal variability of the other SGD end-members was also included in the ranges of dTM concentrations used as the best representation of the SGD end-member in the study area (see Section 2.4).

Dissolved metals concentrations in SGD end-members were higher than those of seawater of the open Western Mediterranean Sea (2.6 - 4.5 nmol L⁻¹ for Zn, 1.1 - 2.3 nmol L^{-1} for Cu, 3.2 - 3.6 nmol L^{-1} for Ni, 1.4 - 8.0 nmol L^{-1} for Fe, 0.13 - 0.28 nmol L^{-1} for Pb, 0.05 - 0.17 nmol L⁻¹ for Co and 0.06 - 0.08 nmol L⁻¹ for Cd) (Tovar-Sánchez et al., 2014a; Yoon et al., 1999) for most of the metals, as shown in Figure 3. This was particularly evident for Zn and Fe (up to two orders of magnitude). Concentrations of Pb in SGD were comparable to the ones of open seawater for most of the samples, indicating that SGD probably is not a relevant source of dissolved Pb to the NW Mediterranean Sea.

The concentrations of dTM in SGD end-members (obtained unifying the data set on
karstic and detrital systems) were compared to those reported in the literature for the
Rhone and the Ebro Rivers (Figure 3). For the data set presented in this work, the
clearest differences were the higher concentrations of dissolved Zn in SGD and
dissolved Cu in the rivers. For the other trace metals, the ranges of concentrations were
comparable in SGD and in rivers, although the median concentrations of Cd, Co, Ni and

Pb in rivers were higher than in SGD. These differences may be related to the distinctive environments of coastal aquifers and rivers, with steep redox gradients in subterranean estuaries and the presence of microbes that can affect the speciation and mobility of trace metals (Knee and Paytan, 2011; O'Connor et al., 2015). different pH/redox conditions in subterranean estuaries with respect to surface estuaries. The comparison of dTM concentrations in SGD and rivers confirmed that SGD must be evaluated as a potential source of metals to the coastal ocean, given that dTM concentrations of SGD end-members are at least similar to those of rivers for most of the metals. Thus, the volume of riverine and SGD water discharges will determine the relative significance of these two inputs of dTM to the coastal sea. 3.2 Comparison of trace metal fluxes into the NW Mediterranean Sea Trace metal inputs through SGD are also conditioned by the multiple and complex processes occurring during the transport through the sediments and/or aquifer, which can affect the dTM concentrations of SGD. Indeed, the selection of appropriate SGD end-members is one of the most challenging points in the assessment of SGD-driven metal fluxes to the ocean. The SGD end-members collected in this work were certainly representative of the water effectively discharging into the sea in the case of the coastal karstic springs. For detrital systems, the most real SGD end-member was determined by collecting several SGD samples of different salinities (fresh and brackish groundwater and recirculated seawater) and by including literature data of dTM already considered as representative of the SGD end-members by the respective authors. This approach permits to obtain a first approximation of SGD-driven dTM fluxes, whose magnitude

377 can be compared to riverine discharge and atmospheric deposition, with the aim of378 evaluating the relevance that SGD can have in the NW Mediterranean Sea.

380 A summary of the calculated SGD-driven, riverine and atmospheric dTM fluxes to the381 NW Mediterranean Sea is shown in Figure 4 and in Table 2.

382 SGD-driven dTM fluxes (in 10^6 mol y^{-1}) to the NW Mediterranean Sea are (0.0007 –

383 0.03) for Cd, (0.004 - 0.11) for Co, (0.09 - 1.9) for Cu, (1.8 - 29) for Fe, (0.09 - 1.9)

for Ni, (0.002 - 0.06) for Pb and (0.38 - 12) for Zn. Trace metals inputs through SGD

can be subjected to seasonal variability. Unfortunately, detailed information about

temporal characterization of SGD (metal concentrations and/or water flow) in each

387 coastal aquifer considered in the work is not available. Notice that the repeated

388 sampling of two SGD end-members, collected twice and three times (Argentona and

389 Garbí, respectively), showed a minimum variability of the dTM concentrations

390 compared to the range of concentrations reported for groundwater samples. Thus, even

391 considering temporal variability of SGD, the magnitude of the calculated SGD-driven

392 dTM fluxes can be still compared to continental inputs of dTM via riverine discharge

393 and atmospheric deposition.

394 Nevertheless, the magnitude of the calculated SGD-driven dTM fluxes can be still

395 compared to continental inputs of dTM via riverine discharge and atmospheric

396 deposition, with the aim of evaluating the relevance that SGD can have in the NW

397 Mediterranean Sea.

398 Dissolved trace metal fluxes from rivers to the NW Mediterranean Sea (in 10^6 mol y^{-1}), 399 calculated using data from the literature as explained in Section 2.4, are (0.02 – 0.03)

400 for Cd, (0.08 - 0.09) for Co, (1.9 - 2.4) for Cu, (13 - 17) for Fe, (1.5 - 1.7) for Ni, (0.01)

-0.03) for Pb and (1.1 - 1.4) for Zn.

402 Dissolved trace metal fluxes from atmospheric deposition to the NW Mediterranean Sea 403 (in 10^6 mol y^{-1}), calculated with literature data as explained in Section 2.4, are (0.07 -404 0.44) for Cd, (0.04 - 0.52) for Co, (2.2 - 3.5) for Cu, (91 - 280) for Fe, (1.1 - 2.5) for Ni, 405 (1.1 - 1.6) for Pb and (15 - 110) for Zn.

Our estimates of the continental inputs of dTM into the NW Mediterranean Sea show that riverine metal fluxes of dissolved Cd, Co, Fe, Ni, Pb and Zn fall within the ranges of the SGD-driven fluxes. However, the median SGD-driven fluxes of these dTM are distinctively lower than riverine fluxes (from 2 to 7 times, depending on the metal), with the exception of Zn, which is comparable (Figure 4; Table 2). The SGD-driven flux of dissolved Cu is distinctly lower than the riverine one. This comparison between SGD and rivers does not consider riverine fluxes of particulate material, which are thought to be important for dissolved elements in seawater in relation to the potential dissolution of the transported particles (Jeandel and Oelkers, 2015; Oelkers et al., 2011). Compared to atmospheric dTM fluxes, the ranges of SGD-driven fluxes of dissolved Cd, Cu, Fe, Pb and Zn are distinctively lower (Figure 4; Table 2). The SGD-driven fluxes of dissolved Co and Ni are also generally lower than the atmospheric ones, showing a difference of one order of magnitude for the median values. 3.3 Spatial and temporal influence of the continental trace metal fluxes The presented comparison between continental inputs of dTM to the NW Mediterranean Sea did not consider the spatial and temporal distribution of SGD, rivers and atmospheric deposition. These distributions are different (Figure 5) and should be taken into account for an appropriate evaluation of the effects of the sources of dTM on

coastal geochemical cycles. Conversely to SGD and riverine discharge, which are short-scale coastal processes, atmospheric deposition occurs over the whole NW Mediterranean basin. Consequently, even if the atmospheric dTM fluxes calculated in Section 3.2 are clearly higher than those through SGD, the real contribution of these two inputs to the coastal sea should be evaluated dividing the calculated dTM fluxes by the respective areas of influence. For the atmospheric deposition, the area of influence is the total study area (180,000 km^2). In the case of SGD, several local studies have highlighted that this process usually does not reach a distance offshore higher than 2-3 km (on the base of Ra isotopes and/or salinity differences in coastal seawater) and that inputs of macronutrients and metals through SGD decrease towards the open seawater, being concentrated in the first hundreds of meters (Gonneea et al., 2014; Mejías et al., 2012; Moore, 2003; Rodellas et al., 2014; Trezzi et al., 2016; Windom et al., 2006). Dissolved trace metals supplied to this coastal seawater can also be removed from the water column by means of biogeochemical processes (Bruland and Lohan, 2003). Therefore, if we consider a distance of 3 km offshore as an upper limit affected by SGD and multiply it by the 3,500 km of coastline of the study area, a maximum area of influence for SGD of about 10,500 km² is obtained. Thus, we calculate the area-weighted SGD-driven dTM fluxes, which are a lower limit (at least for Cu, Fe, Ni and Zn) of the possible SGD contribution to the coastal area. In the case of Cd, Co and Pb, the obtained SGD values are not necessarily a lower limit, since for the samples characterized by no detectable metal concentrations, the limit of detection itself was considered in the calculations (see Section 2.4). The comparison of these SGD-driven fluxes with the atmospheric dTM fluxes (in mol y^{-1} km⁻²) highlights that SGD inputs to the coastal sea are comparable or higher than atmospheric deposition for all the metals studied here, with the exception of Pb (Figure 6).

SGD and river inputs have also a significant difference in their spatial distribution. Trace metal inputs driven by SGD are ubiquitous all along the coast, since fresh groundwater discharges anywhere an aquifer with a positive head relative to sea level is hydraulically connected with the sea (Johannes, 1980) and the recirculation of seawater through the coastal aquifer is also expected to occur in most of the coastal systems (Knee and Paytan, 2011). On the contrary, riverine discharge is limited to the surroundings of river mouths. River plumes are the maximum boundaries where dTM provided by rivers could be detected, if they are not removed before through biological uptake, scavenging by particles or precipitation (Bruland and Lohan, 2003). River plumes are influenced by winds and marine currents: for example, the plume of the Ebro River is usually deviated southwards and reach a maximum distance of 80 km from the river mouth (Palanques and Drake, 1990). Consequently, no direct influence of this river would be expected in the northern area and beyond 80 km in the southern zone. For smaller rivers or ephemeral streams, the river influence would be restricted to a shorter distance from the river mouth. Thus, in areas characterized by the absence of rivers or river plumes, SGD, together with atmospheric deposition, is the major source of dTM to the coastal sea.

A Temporal variability variable-should also be considered when comparing the different
continental inputs of dTM to the NW Mediterranean Sea. Thus, whilst SGD and rivers
can be considered a permanent source of dTM to the coastal areas (even if they are
affected by water flow fluctuations on annual scale), atmospheric deposition in the
Mediterranean Sea has a very high intra-annual and inter-annual variability, with most
of the flux concentrated in few strong events during the year (Avila et al., 1998; Guieu
et al., 2010). This is particularly true for crustal-derived trace metals (Fe, Co and part of

Ni and Cu), whose atmospheric deposition is related principally to Saharan dust events
(Heimbürger et al., 2010). Therefore, the relative significance of SGD-driven dTM
fluxes to the NW Mediterranean Sea can be actually higher in absence of dust events
and lower during the dust events.

482 3.4 Relevance of SGD for the global Mediterranean Sea

The Mediterranean Sea is one of the most oligotrophic and exploited seas in the world, where the sources of nutrients are limited (Macias et al., 2014). Atmospheric deposition (Guerzoni et al., 1999; Guieu et al., 2010, 1997) and riverine runoff (Ludwig et al., 2009; Macias et al., 2014) have been traditionally considered the main continental sources of nutrients, while other sources such as SGD are not commonly considered or documented. However, the relevance of SGD as a source of macronutrients to the whole Mediterranean basin was recently demonstrated (Rodellas et al., 2015a) and the present study represents the first evidence of the potential relevance of SGD as a source of dTM (e.g. Cd, Co, Cu, Fe, Ni, Pb and Zn) at regional scale. While this study is particularly focused on the NW Mediterranean Sea, the paucity of data on dTM concentrations of SGD end-members of the South Western and Eastern Mediterranean basins and the difficulty to obtain these data currently prevent the extension of these calculations to the whole Mediterranean Sea. However, some general considerations about the key role of SGD in contributing dTM to the whole Mediterranean Sea can be made.

Although median SGD-driven dTM fluxes seem to be lower (for Cd, Co, Cu, Fe, Ni and
Pb) or comparable (for Zn) with respect to riverine fluxes in the NW Mediterranean
zone, it should be noticed that this area is characterized by the presence of the second

(Rhone) and the forth (Ebro) major rivers of the Mediterranean Sea (Ludwig et al., 2009). If we consider other areas of the Mediterranean basin, the riverine discharge is distinctively lower, with the exception of the Adriatic Sea (Po river) and the area of the Nile delta (Ludwig et al., 2009). This is particularly true for the arid and semi-arid regions of the Mediterranean Sea, such as the Eastern coast, the African coast and many islands. For instance, the riverine discharge along 4,400 km of coastline from Morocco to Libya is less than $10^9 \text{ m}^3 \text{ y}^{-1}$ (Ludwig et al., 2009), whereas the riverine discharge in the NW Mediterranean Sea, with a slightly shorter coastline (3,500 km), is more than 70 times higher. A first-order estimation of SGD-driven dTM fluxes for the African coast could be obtained with the same procedure described for the NW basin, using the shore-normalized SGD water flow of the whole Mediterranean Sea (Rodellas et al., 2015a) and assuming the same dTM concentrations of SGD end-members from the NW Mediterranean area. Thereby, SGD-driven dTM fluxes from the African coast would be distinctively higher than riverine metal fluxes (up to 3 orders of magnitude), assuming similar concentrations in rivers of North Africa and the NW Mediterranean Sea (notice that recent data on the African Moulouya River showed dTM concentrations comparable or lower than those of the Ebro and Rhone Rivers (Tovar-Sánchez et al., 2016)). SGD would thus be a much more significant source of dTM than rivers for coastal seawater in the arid and semi-arid regions of the Mediterranean Sea. 3.5 Biogeochemical implications of SGD Most of the trace metals analysed in this work (i.e. Cd, Co, Cu, Fe, Ni and Zn) are

526 essential micronutrients for the planktonic community, as their deficiency can limit

-	527	oceanic plankton production, whereas they can be toxic at high levels (Jordi et al., 2012;
1 2 3	528	Lafabrie et al., 2013; Morel and Price, 2003; Twining and Baines, 2013). Considering
4 5	529	that SGD is a significant source of dTM to the coastal sea, in particular in those areas
8 8	530	where the presence of rivers is limited, SGD may potentially have a strong impact on
9 0	531	the coastal productivity of the Mediterranean Sea. The involvement of SGD on
1 2 3	532	biogeochemical cycles of the Mediterranean Sea was already emphasized at regional
4 5	533	scale for macronutrient inputs (DIN, DIP and DSi) (Rodellas et al., 2015a). Therefore,
6 7 9	534	taking into account the results of this study, we hypothesize that the significance of
9 0	535	SGD for coastal biological communities in the oligotrophic Mediterranean Sea is related
1 2	536	not only to inputs of macronutrients but also of bioactive trace metals. However, the
3 4 5	537	link between SGD-driven dTM fluxes to the coastal sea and coastal productivity is a
6 7	538	complex topic that should be further investigated, as dTM can be removed from the
8 9 0	539	coastal seawater by several biogeochemical processes (Bruland and Lohan, 2003).
1 2	540	Nevertheless, SGD should be certainly considered in studies on the biogeochemistry of
3 4 5	541	coastal areas and in the assessment of trace metal budgets.
5 6 7	542	
8 9	543	4 Conclusions
0 1 2	544	
3 4	545	This study is a first effort to estimate regional inputs of dTM (Cd, Co, Cu, Fe, Ni, Pb
5 6 7	546	and Zn) through SGD to the oligotrophic Mediterranean Sea. SGD-driven dTM fluxes,
8 9	547	calculated for the NW basin and compared to riverine discharge and atmospheric
0 1 2	548	deposition, reveal that SGD is a significant source of dTM to the coastal Mediterranean
2 3 4	549	Sea. The relevance of SGD may be even higher in coastal areas of the Southern and
5 6 7	550	Eastern Mediterranean Sea or in many islands, which are characterized by scarce
7 8 9 0 1	551	riverine discharge. Therefore SGD should be taken into account for the assessment of
23		22

trace metal budgets and for biogeochemical studies in coastal areas, as some of the metals delivered by this process are crucial micronutrients for primary productivity in the ocean.

Further investigations on trace metal inputs through SGD in the Mediterranean Sea are required in order to improve the estimation of SGD fluxes presented in this study. Indeed, spatial and temporal variability of trace metal concentrations in SGD endmembers, as well as relations between concentrations and magnitude of water flows, need to be investigated in a large number of subterranean estuaries. At the same time, the present data set should be expanded with the characterization of metal inputs through SGD in areas that are not well studied at the moment, such the African Coast.

563 SUPPORTING INFORMATION

Karstic and detrital SGD-driven flows reported in the literature for local studies in the
NW Mediterranean Sea (Appendix A); dissolved trace metal concentrations of the
Rhone and the Ebro Rivers reported in the literature (Appendix B); atmospheric
dissolved trace metal fluxes to the Mediterranean Sea reported in the literature
(Appendix C).

570 ACKNOWLEDGMENTS

571 This project has been partially funded by the European Union Seventh Framework
572 Programme through the MetTrans Initial Training Network, Marie Curie Actions, which

- also provide financial support through a PhD fellowship to G.T. (EU FP7-People-2011-
- 574 ITN-290336). Support provided by the Generalitat de Catalunya to MERS (2014 SGR –
- 575 1356) is also acknowledged. VR acknowledges financial support from the European
- 576 Union's FP7 (Marie Curie Actions PCOFUND-GA-2013-609102), through the
- 577 PRESTIGE programme coordinated by Campus France. The Spanish Government

(MINECO) is acknowledged for support to E.G-S through a post-doctoral grant (FPDI-

	585	
1 2 3 4 5	586 587 588	Achterberg, E.P., Van den Berg, C.M.G., 1994. In-line ultraviolet-digestion of natural water samples for trace metal determination using an automated voltammetric system. Anal. Chim. Acta 291, 213–232. doi:10.1016/0003-2670(94)80017-0
6 7 8 9 10 11	589 590 591 592	Avila, A., Alarcón, M., Queralt, I., 1998. The chemical composition of dust transported in red rains—its contribution to the biogeochemical cycle of a holm oak forest in Catalonia (Spain). Atmos. Environ. 32, 179–191. doi:10.1016/S1352- 2310(97)00286-0
12 13 14 15	593 594	Bakalowicz, M., 2015. Karst and karst groundwater resources in the Mediterranean. Environ. Earth Sci. 74, 5–14. doi:10.1007/s12665-015-4239-4
16 17 18 19	595 596	Bakalowicz, M., 1999. Connaissance et gestion des ressources en eaux souterraines dans les regions karstiques. Gestion 3, 1–44.
20 21 22 23 24 25 26 27	597 598 599 600 601 602	Baudron, P., Cockenpot, S., Lopez-Castejon, F., Radakovitch, O., Gilabert, J., Mayer, A., Garcia-Arostegui, J.L., Martinez-Vicente, D., Leduc, C., Claude, C., 2015. Combining radon, short-lived radium isotopes and hydrodynamic modeling to assess submarine groundwater discharge from an anthropized semiarid watershed to a Mediterranean lagoon (Mar Menor, SE Spain). J. Hydrol. 525, 55–71. doi:10.1016/j.jhydrol.2015.03.015
28 29 30 31 32	603 604 605	Beck, A.J., Cochran, J.K., Sañudo-Wilhelmy, S.A., 2010. The distribution and speciation of dissolved trace metals in a shallow subterranean estuary. Mar. Chem. 121, 145–156. doi:10.1016/j.marchem.2010.04.003
33 34 35 36 37 38	606 607 608 609	Beck, A.J., Cochran, J.K., Sañudo-Wilhelmy, S.A., 2009. Temporal Trends of Dissolved Trace Metals in Jamaica Bay, NY: Importance of Wastewater Input and Submarine Groundwater Discharge in an Urban Estuary. Estuaries and Coasts 32, 535–550. doi:10.1007/s12237-009-9140-5
39 40 41 42 43 44	610 611 612 613	Beck, Tsukamoto, Y., Tovar-Sanchez, A., Huerta-Diaz, M., Bokuniewicz, H.J., Sañudo- Wilhelmy, S. a., 2007. Importance of geochemical transformations in determining submarine groundwater discharge-derived trace metal and nutrient fluxes. Appl. Geochemistry 22, 477–490. doi:10.1016/j.apgeochem.2006.10.005
45 46 47 48 49 50	614 615 616 617	Béthoux, J.P., Morin, P., Chaumery, C., Connan, O., Gentili, B., Ruiz-Pino, D., 1998. Nutrients in the Mediterranean Sea, mass balance and statistical analysis of concentrations with respect to environmental change. Mar. Chem. 63, 155–169. doi:10.1016/S0304-4203(98)00059-0
51 52 53 54 55	618 619 620	Bewers, J.M., Yeats, P. a., 1989. Transport of river-derived trace metals through the coastal zone. Netherlands J. Sea Res. 23, 359–368. doi:10.1016/0077- 7579(89)90020-3
50 57 58 59 60 61	621 622 623	Bonnet, S., Guieu, C., 2006. Atmospheric forcing on the annual iron cycle in the western Mediterranean Sea: A 1-year survey. J. Geophys. Res. Ocean. 111, 1–13. doi:10.1029/2005JC003213
62 63		25
Bowie, A.R., Whitworth, D.J., Achterberg, E.P., Mantoura, R.F.C., Worsfold, P.J., 2002. Biogeochemistry of Fe and other trace elements (Al, Co, Ni) in the upper Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 49, 605-636. doi:10.1016/S0967-0637(01)00061-9 Bruland, K.W., Donat, J.R., Hutchins, D.A., 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555-1577. doi:10.4319/lo.1991.36.8.1555 Bruland, K.W., Lohan, M.C., 2003. Controls of Trace Metals in Seawater, in: Treatise on Geochemistry. Elsevier, pp. 23-47. doi:10.1016/B0-08-043751-6/06105-3 Charette, M. a., Buesseler, K.O., 2004. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol. Oceanogr. 49, 376-385. doi:10.4319/lo.2004.49.2.0376 Charette, M. a., Sholkovitz, E.R., Hansel, C.M., 2005. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochim. Cosmochim. Acta 69, 2095–2109. doi:10.1016/j.gca.2004.10.024 Charette, M.A., Sholkovitz, E.R., 2006. Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water. Geochim. Cosmochim. Acta 70, 811-826. doi:10.1016/j.gca.2005.10.019 Charette, M.A., Sholkovitz, E.R., 2002. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys. Res. Lett. 29, 1– 4. doi:10.1029/2001GL014512 Chester, R., Nimmo, M., Preston, M.R., 1999. The trace metal chemistry of atmospheric dry deposition samples collected at Cap Ferrat: A coastal site in the Western Mediterranean. Mar. Chem. 68, 15-30. doi:10.1016/S0304-4203(99)00062-6 De Sieves, N.R., Yamahara, K.M., Layton, B.A., Joyce, E.H., Boehm, A.B., 2008. Submarine discharge of nutrient-enriched fresh groundwater at Stinson Beach, California is enhanced during neap tides. Limnol. Oceanogr. 53, 1434–1445. doi:10.4319/lo.2008.53.4.1434 Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., Tack, F.M.G., 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci. Total Environ. 407, 3972-85. doi:10.1016/j.scitotenv.2008.07.025 Duce, R.A., Liss, P.S., Merrill, J.T., Atlas, E.L., Hicks, B.B., Millertl, J.M., Prospero, J.M., Arimoto, R., Church, T.M., Ellis, W., Galloway, J.N., Hansen, L., Knap, A.H., Reinhardt, K.H., Soudine, A., Tsunogai, S., Wollast, R., Zhou, M., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 5, 193–259. Elbaz-Poulichet, F., Garnier, J., Guan, D., Martin, J., Thomas, A., 1996. The conservative behaviour of trace metals (Cd, Cu, Ni and Pb) and as in the surface

1	662 663	plume of stratified estuaries: example of the Rhône River (France). Estuar. Coast. Shelf Sci. 42, 289–310. doi:http://dx.doi.org/10.1006/ecss.1996.0021
3 4 5	664 665	Elbaz-Poulichet, F., Guan, D., Seyler, P., Martin, J.M., Morley, N.H., 1989. Dissolved trace metals and metalloids in the Rhone river/estuarine system. Water Pollut. Res.
6 7	666	reports EROS 2000 395–422.
8	667	Elrod, V.A., Berelson, W.M., Coale, K.H., Johnson, K.S., 2004. The flux of iron from
10	668	continental shelf sediments: A missing source for global budgets. Geophys. Res.
11 12	669	Lett. 31, 2–5. doi:10.1029/2004GL020216
13 14	670	Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Garcés, E., Radakovitch, O.,
$14 \\ 15$	671	Mayer, A., Estradé, S., Basterretxea, G., 2010a. An assessment of karstic
16	672	submarine groundwater and associated nutrient discharge to a Mediterranean
17	673	coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry 97,
18	674	211–229. doi:10.1007/s10533-009-9368-y
19 20		
21	675	Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Rodellas, V., Mejías, M.,
22	676	Ballesteros, B., Domínguez, J. a., 2010b. Groundwater and nutrient discharge
23	677	through karstic coastal springs (<i>Castelló</i> , Spain). Biogeosciences 7, 2625–2638.
24 25	678	doi:10.5194/bg-7-2625-2010
26 27	679	Gardiner, J., Stiff, M.J., 1974. The determination of Cadmium, Lead, Copper and Zinc
28	680	in ground water, estearine water, sewage and sewage effluent by anodic stripping
29 30	681	voltammetry. Water Res. 9, 517–523.
31	682	Gonneea M.E. Charette M.A. Liu O. Herrera-Silveira I.A. Morales-Oieda S.M.
32 22	683	2014 Trace element geochemistry of groundwater in a karst subterranean estuary
33 34	684	(Yucatan Peninsula Mexico) Geochim Cosmochim Acta 132 31–49
35 36	685	doi:10.1016/j.gca.2014.01.037
37	(0)	Comment & Charter D. Dates F. Harry D. Latte Dilat M.D. Marrows C. Misser
38	686	Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loye-Pilot, M.D., Measures, C., Migon,
39 40	607	C., Monnaron, E., Mounn, C., Kossini, P., Saydam, C., Soudine, A., Ziveri, P.,
41	000 600	Moditarrangen See, Drog Occorp. 44, 147, 100, doi:10.1016/S0070
42	600	$\frac{1}{6611} \frac{1}{000024} = 5$
43	090	0011(99)00024-5
44 15	601	Guiau C. Chastar P. Nimmo M. Martin I.M. Guarzoni S. Nicolas F. Matau I.
46	692	Keyse S 1997 Atmospheric imput of dissolved and particulate metals to the
47	692	northwestern Mediterranean Deen Res 14 655_674
48	075	northwestern Mediterranean. Deep. Res. 44, 055–074.
49 50	694	Guieu C. Love-Pilot MD. Benyahya I. Dufour A 2010 Spatial variability of
51	695	atmospheric fluxes of metals (Al Fe Cd Zn and Ph) and phosphorus over the
52	696	whole Mediterranean from a one-year monitoring experiment. Biogeochemical
53	697	implications Mar Chem 120 164–178 doi:10.1016/i.marchem 2009.02.004
54 55	0,7,7	
56	698	Guieu, C., Zhang, J., Thomas, A.J., Martin, J.M., Brun-Cottan, J.C., 1993. Significance
57	699	of atmospheric fallout on the upper laver water chemistry of the north-western
58	700	Mediterranean. J. Atmos. Chem. 17, 45–60.
59 60	- •	
61		
62		
63		27

	701	Heimbürger, L.E., Migon, C., Dufour, A., Chiffoleau, J.F., Cossa, D., 2010. Trace metal
1	702	concentrations in the North-western Mediterranean atmospheric aerosol between
2	703	1986 and 2008: Seasonal natterns and decadal trends. Sci. Total Environ. 408
3	703	2620, 2629 , doi:10.1016/j goiteteny. 2010.02.042
4	704	2029–2038. doi:10.1010/j.scholenv.2010.02.042
5		
6	705	Instituto Geologico Minero de España (IGME), 1986. Mapa del Karst de España.
/ 8		
9	706	Jeandel, C., Oelkers, E.H., 2015. The influence of terrigenous particulate material
10	707	dissolution on ocean chemistry and global element cycles. Chem. Geol. 395, 50–
11	708	66. doi:10.1016/j.chemgeo.2014.12.001
12		
13	709	Jeandel C. Peucker-Ehrenbrink B. Jones M.T. Pearce C.R. Oelkers F.H.
14	707	Goddoria V. Lacon E. Aumont O. Arrouzo T. 2011 Occon marging: The
15	710	Goudens, T., Lacan, F., Aumont, O., Arsouze, T., 2011. Ocean margins. The
16	711	missing term in oceanic element budgets? Eos (Washington, DC). 92, 217–224.
17	712	doi:10.1029/2011EO260001
18		
19	713	Jickells, T., 1995, Atmospheric inputs of metals and nutrients to the oceans: their
20	714	magnitude and effects Mar Chem 48 199-214 doi:10.1016/0304-
21	717	4202/05/02794 D
22	/15	4205(95)92784-P
23		
24	716	Johannes, R., 1980. The Ecological Significance of the Submarine Discharge of
25 26	717	Groundwater . Mar. Ecol. Prog. Ser. 3, 365–373. doi:10.3354/meps003365
20 27		
28	718	Iordi A Basterretxea G Tovar-Sánchez A Alastuev A Ouerol X 2012 Conner
29	710	aroad inhibit nhutonlankton growth in the Mediterrangen See Prog. Netl. Aged
30	719	actosols minor phytopiankton growth in the Mediterranean Sea. Proc. Natl. Acad.
31	720	Sci. U. S. A. 109, 21246–9. doi:10.10/3/pnas.120/56/110
32		
33	721	Knee, K., Paytan, A., 2011. Submarine Groundwater Discharge: A Source of Nutrients,
34	722	Metals, and Pollutants to the Coastal Ocean. Treatise Estuar. Coast. Sci. 4, 205–
35	723	234. doi:10.1016/B978-0-12-374711-2.00410-1
36	/ 20	
37	724	Kwon E Kim C Drimoou E Mooro W Cho H M DoVrigo T Sermionto I
38	724	Kwoli, E., Kili, O., Filileau, F., Moole, W., Cho, HWi, Deviles, T., Salillento, J.,
39	/25	Charette, M., Cho, YK., 2014. Global Estimate of Submarine Groundwater
40	726	Discharge Based on an Observationally Constrained Radium Isotope Model.
4⊥ 40	727	Geophys. Res. Lett. 41, 8438-8444. doi:10.1002/2014GL061574.Received
4Z 42		
43 44	728	Lafabrie, C., Garrido, M., Leboulanger, C., Cecchi, P., Grégori, G., Pasqualini, V.,
45	729	Pringault Ω 2013 Impact of contaminated-sediment resuspension on
46	720	abutenlenkten in the Disuelie lessen (Carries Mediterroneen See). Estuer Coest
47	/30	phytoplankton in the Bigugha lagoon (Corsica, Mediterranean Sea). Estuar. Coast.
48	731	Shelf Sci. 130, 70–80. doi:10.1016/j.ecss.2013.06.025
49		
50	732	Ludwig, W., Dumont, E., Meybeck, M., Heussner, S., 2009. River discharges of water
51	733	and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem
52	734	changes during past and future decades? Prog. Oceanogr. 80, 199–217
53	725	doi:10.1016/j. possen 2000.02.001
54	/55	u01.10.1010/J.pocean.2009.02.001
55		
56	736	Macıas, D., Garcia-Gorriz, E., Piroddi, C., Stips, A., 2014. Biogeochemical control of
57	737	marine productivity in the Mediterranean Sea during the last 50 years. Global
58	738	Biogeochem. Cycles 28, 897–907. doi:doi:10.1002/2014GB004846
59	-	
0U 61		
62		
63		
64		28

Mackey, K.R.M., Buck, K.N., Casey, J.R., Cid, A., Lomas, M.W., Sohrin, Y., Paytan, A., 2012. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea. Front. Microbiol. 3, 1–15. doi:10.3389/fmicb.2012.00359 Mahowald, N.M., Baker, A.R., Bergametti, G., Brooks, N., Duce, R. a., Jickells, T.D., Kubilay, N., Prospero, J.M., Tegen, I., 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles 19, 1–15. doi:10.1029/2004GB002402 Martin, J.-M., Whitfield, M., 1983. The Significance of the River Input of Chemical Elements to the Ocean, in: Wong, C.S., Boyle, E., Bruland, K.W., Burton, J.D., Goldberg, E.D. (Eds.), Trace Metals in Sea Water. Springer US, Boston, MA, pp. 265-296. doi:10.1007/978-1-4757-6864-0 16 Mcallister, S.M., Barnett, J.M., Heiss, J.W., Findlay, A.J., Macdonald, D.J., Dow, C.L., Luther, G.W., Michael, H. a, Chan, C.S., 2015. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnol. Oceanogr. 60, 329-345. doi:10.1111/lno.10029 Mejías, M., Ballesteros, B.J., Antón-Pacheco, C., Domínguez, J. a., Garcia-Orellana, J., Garcia-Solsona, E., Masqué, P., 2012. Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. J. Hydrol. 464-465, 27-40. doi:10.1016/j.jhydrol.2012.06.020 Migon, C., Journel, B., Nicolas, E., 1997. Measurement of trace metal wet, dry and total atmospheric fluxes over the Ligurian Sea. Atmos. Environ. 31, 889-896. doi:10.1016/S1352-2310(96)00242-7 Migon, C., Morelli, J., Nicolas, E., Copin-Montegut, G., 1991. Evaluation of total atmospheric deposition of Pb, Cd, Cu and Zn to the Ligurian Sea. Sci. Total Environ. 105, 135-148. doi:10.1016/0048-9697(91)90336-D Moore, W.S., 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66, 75–93. doi:10.1023/B:BIOG.0000006065.77764.a0 Moore, W.S., 1999. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 65, 111-125. doi:10.1016/S0304-4203(99)00014-6 Morel, F.M.M., Price, N.M., 2003. The biogeochemical cycles of trace metals in the oceans. Science 300, 944-947. doi:10.1126/science.1083545 O'Connor, A.E., Luek, J.L., McIntosh, H., Beck, A.J., 2015. Geochemistry of redox-sensitive trace elements in a shallow subterranean estuary. Mar. Chem. 172, 70-81. doi:10.1016/j.marchem.2015.03.001

	776	Obata, H., Van den Berg, C.M.G., 2001. Determination of picomolar levels of iron in
1	777	seawater using catalytic cathodic stripping voltammetry. Anal. Chem. 73, 2522-
2 3	778	2528. doi:10.1021/ac001495d
4 5	779	Oelkers, E.H., Gislason, S.R., Eiriksdottir, E.S., Jones, M., Pearce, C.R., Jeandel, C.,
6	780	2011. The role of riverine particulate material on the global cycles of the elements.
7 8	781	Appl. Geochemistry 26, S365–S369. doi:10.1016/j.apgeochem.2011.03.062
9 10	782	Ollivier, P., Claude, C., Radakovitch, O., Hamelin, B., 2008. TIMS measurements of
11	783	226Ra and 228Ra in the Gulf of Lion, an attempt to quantify submarine
12	784	groundwater discharge. Mar. Chem. 109, 337–354.
13 14	785	doi:10.1016/j.marchem.2007.08.006
15 16	786	Ollivier, P., Radakovitch, O., Hamelin, B., 2011. Major and trace element partition and
17	787	fluxes in the Rhône River. Chem. Geol. 285, 15–31.
18 19	788	doi:10.1016/j.chemgeo.2011.02.011
20 21	789	Palanques, A., Drake, D.E., 1990. Distribution and dispersal of suspended particulate
22	790	matter on the Ebro continental shelf, northwestern Mediterranean Sea. Mar. Geol.
23 24	791	95, 193–206. doi:10.1016/0025-3227(90)90116-2
25	792	Ridame, C., Guieu, C., Loÿe-Pilot, MD., 1999. Trend in total atmospheric deposition
26 27	793	fluxes of aluminium, iron, and trace metals in the northwestern Mediterranean over
28	794	the past decade (1985-1997). J. Geophys. Res. Atmos. 104, 30127-30138.
29 30	795	doi:10.1029/1999JD900747
31 22	796	Rodellas, V., Garcia-Orellana, J., Garcia-Solsona, E., Masqué, P., Domínguez, J.A.,
33	797	Ballesteros, B.J., Mejías, M., Zarroca, M., 2012. Quantifying groundwater
34	798	discharge from different sources into a Mediterranean wetland by using 222Rn and
35 36	799	Ra isotopes. J. Hydrol. 466-467, 11-22. doi:10.1016/j.jhydrol.2012.07.005
37 38	800	Rodellas, V., Garcia-Orellana, J., Masqué, P., Feldman, M., Weinstein, Y., 2015a.
39	801	Submarine groundwater discharge as a major source of nutrients to the
40	802	Mediterranean Sea. Proc. Natl. Acad. Sci. U. S. A. 112, 3926-30.
41 42	803	doi:10.1073/pnas.1419049112
43	804	Rodellas V. Garcia Orellana I. Masqué P. Font-Muñoz I.S. 2015h The influence
44 45	805	of sediment sources on radium-derived estimates of Submarine Groundwater
46	806	Discharge Mar Chem 171 107–117 doi:10.1016/i.marchem 2015.02.010
47	000	Discharge. Mar. Chem. 171, 107–117. doi:10.1010/j.marchem.2013.02.010
48	807	Rodellas, V., Garcia-Orellana, J., Toyar-Sánchez, A., Basterretxea, G., López-Garcia
49 50	808	IM Sánchez-Quiles D. Garcia-Solsona F. Masqué P. 2014 Submarine
50 51	809	groundwater discharge as a source of nutrients and trace metals in a Mediterranean
52	810	hav (Palma Beach Balearic Islands) Mar Chem 160, 56–66
53	811	doi:10.1016/i marchem 2014.01.007
54	011	doi.10.1010/j.marchem.2014.01.007
55 56	812	Roux I.I. Le Roux S.I. Appriou P. 1008 Rehaviour and speciation of metallic
57	813	species Cu Cd Mn and Fe during estuarine mixing Mar Pollut Bull 36 56-64
58	814	doi:10.1016/S0025-326X(98)90033-9
59	014	doi.10.1010/50025-520A(70)70055-7
60 61		
62		
63		20
64		30
65		

	815	Sandroni, V., Migon, C., 2002. Atmospheric deposition of metallic pollutants over the
1	816	Ligurian Sea: Labile and residual inputs. Chemosphere 47, 753–764.
2	817	doi:10.1016/S0045-6535(01)00337-X
3		
4	818	Santos I.R. Cook P.L.M. Rogers I. de Weys I. Evre B.D. 2012 The "salt wedge
5	819	nump": Convection-driven pore-water exchange as a source of dissolved organic
0 7	017	and inorgania carbon and nitrogen to an actuary Limpol Oceanogr 57, 1415
8	020	and morganic carbon and multigen to an estuary. Limitor. Oceanogr. 57 , 1415– 1406 drive a 210/le 2012 57 5 1415
9	821	1420. doi:10.4319/10.2012.57.5.1415
10		, ,, _,,, _, , , , , , , , , , , , ,
11	822	Santos-Echeandía, J., 2011. Direct simultaneous determination of Co, Cu, Fe, Ni and v
12	823	in pore waters by means of adsorptive cathodic stripping voltammetry with mixed
13	824	ligands. Talanta 85, 506–512. doi:10.1016/j.talanta.2011.04.035
14		
15 16	825	Santos-Echeandia, J., Prego, R., Cobelo-García, a., Millward, G.E., 2009. Porewater
17	826	geochemistry in a Galician Ria (NW Iberian Peninsula): Implications for benthic
18	827	fluxes of dissolved trace elements (Co Cu Ni Ph V Zn) Mar Chem 117 77–
19	828	87. doi:10.1016/j.marchem.2009.05.001
20	020	67. doi.10.1010/j.inarchem.2007.05.001
21	020	Show T.I. Ciashas I.M. Jahaha D.A. 1000 Farly diagonasis in differing demositional
22	029	Snaw, 1.J., Gleskes, J.M., Janike, R.A., 1990. Early diagenesis in differing depositional
23	830	environments: The response of transition metals in pore water. Geochim.
24 25	831	Cosmochim. Acta 54, 1233–1246. doi:10.1016/0016-7037(90)90149-F
26		
27	832	Stieglitz, T.C., van Beek, P., Souhaut, M., Cook, P.G., 2013. Karstic groundwater
28	833	discharge and seawater recirculation through sediments in shallow coastal
29	834	Mediterranean lagoons, determined from water, salt and radon budgets. Mar.
30	835	Chem. 156, 73–84. doi:10.1016/j.marchem.2013.05.005
31		
3∠ 33	836	Sunda, W.G., 2012. Feedback interactions between trace metal nutrients and
34	837	phytoplankton in the ocean Front Microbiol 3 1–22
35	838	doi:10.3389/fmich 2012.00204
36	030	doi:10.3309/1111c0.2012.0020+
37	020	Town Sánshoz A 2012 Someling on reaches for two or element determination in
38	039	Tovar-Sanchez, A., 2012. Sampling approches for trace element determination in
39	840	seawater, in: Pawiiszyn, J., Bayona, J.M. (Eds.), Comprehensive Sampling and
40 41	841	Sample Preparation. Academic Press: Oxford, UK, pp. 317–334.
42	842	doi:10.1016/B978-0-12-381373-2.10017-1
43		
44	843	Tovar-Sánchez, A., Arrieta, J.M., Duarte, C.M., Sañudo-Wilhelmy, S.A., 2014a. Spatial
45	844	gradients in trace metal concentrations in the surface microlayer of the
46	845	Mediterranean Sea. Front. Mar. Sci. 1, 1–8. doi:10.3389/fmars.2014.00079
47		
48 10	846	Tovar-Sánchez, A., Basterretxea, G., Ben Omar, M., Jordi, A., Sánchez-Quiles, D.,
	847	Makhani, M., Mouna, D., Muya, C., Anglès, S., 2016, Nutrients, trace metals and
51	848	B-vitamin composition of the Moulouva River: a major North African river
52	840	discharging into the Mediterranean Sea, Estuar Coast, Shelf Sci. 176, 47, 57
53	04J 050	doi:10.1016/j. ooss. 2016.04.006
54	030	d01.10.1010/j.ccss.2010.04.000
55	054	
56 57	851	Iovar-Sanchez, A., Basterretxea, G., Rodellas, V., Sanchez-Quiles, D., Garcia-Orellana,
57 58	852	J., Masqué, P., Jordi, A., López, J.M., Garcia-Solsona, E., 2014b. Contribution of
59	853	Groundwater Discharge to the Coastal Dissolved Nutrients and Trace Metal
60		
61		
62		
63		31
04 65		
0.0		

1	854 855	Concentrations in Majorca Island: Karstic vs Detrital Systems. Environ. Sci. Technol. 48, 11819–11827. doi:dx.doi.org/10.1021/es502958t
3 4 5 6 7 8	856 857 858 859	Trezzi, G., Garcia-Orellana, J., Santos-Echeandia, J., Rodellas, V., Garcia-Solsona, E., Garcia-Fernandez, G., Masqué, P., 2016. The influence of a metal-enriched mining waste deposit on submarine groundwater discharge to the coastal sea. Mar. Chem. 178, 35–45. doi:10.1016/j.marchem.2015.12.004
9 10 11 12 12	860 861 862	Twining, B.S., Baines, S.B., 2013. The trace metal composition of marine phytoplankton. Ann. Rev. Mar. Sci. 5, 191–215. doi:10.1146/annurev-marine- 121211-172322
14 15 16	863 864	UNEP/MAP/MED POL, 2003. Riverine transport of water, sediments and pollutants to the Mediterranean Sea. MAP Tech. Reports Ser. Nº141.
17 18 19 20 21 22	865 866 867 868	Windom, H.L., Moore, W.S., Niencheski, L.F.H., Jahnke, R. a., 2006. Submarine groundwater discharge: A large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar. Chem. 102, 252–266. doi:10.1016/j.marchem.2006.06.016
23 24 25 26 27 28	869 870 871	Yoon, Y.Y., Martin, J.M., Cotté, M.H., 1999. Dissolved trace metals in the Western Mediterranean Sea: Total concentration and fraction isolated by C18 Sep-Pak technique. Mar. Chem. 66, 129–148. doi:10.1016/S0304-4203(99)00033-X
29 30 31 32 33	872 873 874 875	Zarroca, M., Linares, R., Rodellas, V., Garcia-Orellana, J., Roqué, C., Bach, J., Masqué, P., 2014. Delineating coastal groundwater discharge processes in a wetland area by means of electrical resistivity imaging, 224Ra and 222Rn. Hydrol. Process. 28, 2382–2395. doi:10.1002/hyp.9793
34 35 36	876	
37 38 39	877	
40 41 42 43 44 45 47 48 90 123 45 55 55 55 55 56 66 20	878	
63 64 65		32

1	1 2	Submarine groundwater discharge: a significant source of dissolved trace metals to the North Western Mediterranean Sea
2	3	trace metals to the North Western Mediterranean Sea
3 4	4	Giada Trezzi ^{* 1} , Jordi Garcia-Orellana ^{1,2} , Valentí Rodellas ^{1,3} , Juan Santos-Echeandia
5 6	5	⁴ , Antonio Tovar-Sánchez ^{5,6} , Ester Garcia-Solsona ⁷ , Pere Masqué ^{1,2,8,9} .
7	6 7	¹ Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Spain
8	8	² Departament de Física, Universitat Autônoma de Barcelona, Spain
9 10	9	³ CEREGE, Aix-Marseille Université, CNRS, IRD, Coll France, Aix-en-Provence, France
11	10	⁴ Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Spain
12	11 12	⁶ Instituto de Ciencias Marinas de Andalucia (CSIC), Spain
13	13	⁷ Departament de Dinàmica de la Terra I de l'Oceà, Universitat de Barcelona, Spain
14 15	14	⁸ School of Natural Sciences and Centre for Marine Ecosystems Research, Edith Cowan University,
16	15	Australia
17	10 17	Oceans Institute and School of Physics, The University of Western Australia, Australia
18	18	
20	19	
21 22	20	* Giada Trezzi
23 24	21	Institut de Ciència i Tecnologia Ambientals.
25 26	22	Universitat Autònoma de Barcelona
27 28	23	08193 Bellaterra. Spain
29 30	24	Email: <u>Giada.Trezzi@uab.cat; giada.trezzi@gmail.com</u> Tel: +34 93 581 11 91
31	25	
32	~ .	
33 34 35	26	Key words: submarine groundwater discharge (SGD), trace metals, micronutrients,
36 37	27	Mediterranean Sea, rivers, atmospheric deposition
38 39		
40 41		
42		
43 44		
45		
46		
47 48		
49		
50		
5⊥ 52		
53		
54		
55 56		
57		
58		
59 60		
61		

28 Abstract

Bioactive trace metals play a significant role as micronutrients in the ocean and therefore it is important to evaluate their sources. Submarine Groundwater Discharge (SGD) has been recognized as an input of trace metals to the coastal sea. Here, we investigated the significance of SGD as a source of dissolved trace metals (dTM) to the coastal sea in a regional area such as the North Western (NW) Mediterranean Sea. We analyzed dTM concentrations in SGD end-members and incorporate data on SGD dTM concentrations and water flows reported in previous studies carried out in this area, to estimate the following ranges of SGD-driven dTM fluxes (in $10^6 \text{ mol } \text{y}^{-1}$): Cd: 0.0007 -0.03, Co: 0.004 -0.11, Cu: 0.09 - 1.9, Fe: 1.8 - 29, Ni: 0.09 - 1.9, Pb: 0.002 - 0.06, Zn: 0.38 - 12. These fluxes were compared to dTM fluxes from riverine discharge and atmospheric deposition, demonstrating that SGD is a major source of dTM to the NW Mediterranean Sea. Whilst riverine inputs are limited to the surrounding of river mouths and atmospheric fluxes are distributed throughout the whole basin mainly during sporadic depositional events, SGD represents a permanent, albeit seasonally variable, source of metals to most of the coastal areas. SGD-driven dTM inputs may be even more significant, in relative terms, in other coastal regions of the Mediterranean Sea where rivers are scarce, as it is the case of the African coast and many islands. This study highlights the relevance of SGD as a source of dTM to the Mediterranean Sea and the need of its consideration in the calculation of metal budgets in the basin and in the investigation of biogeochemical cycles in coastal areas.

1 Introduction

54	The availability of bioactive trace metals (e.g. Fe, Mn, Co, Ni, Cu, Zn and Cd) plays an
55	important role in supporting primary productivity in the oceans (Bruland et al., 1991;
56	Morel and Price, 2003; Sunda, 2012). Understanding the biogeochemical cycling of
57	these micronutrients requires a detailed knowledge of their diverse sources and sinks.
58	The main continental sources of trace metals to the ocean are riverine discharge (e.g.
59	Bewers and Yeats, 1989; Jeandel and Oelkers, 2015; Martin and Whitfield, 1983;
60	Oelkers et al., 2011), atmospheric deposition (e.g. Bowie et al., 2002; Duce et al., 1991;
61	Jickells, 1995; Mackey et al., 2012; Mahowald et al., 2005), benthic fluxes from
62	sediments (e.g. Elrod et al., 2004; Jeandel et al., 2011) and submarine groundwater
63	discharge (SGD), although the latter has received attention only recently (e.g. Beck et
64	al., 2007, 2009; Charette and Buesseler, 2004; Windom et al., 2006). SGD includes both
65	fresh meteoric groundwater and recirculated seawater through permeable sediments of
66	the coastal aquifer. Indeed, the mixing interface between fresh and salty water is a
67	chemical reaction zone called the subterranean estuary, where groundwater can become
68	enriched or depleted in chemical compounds before discharging into the sea (Moore,
69	1999). The chemical composition of SGD is influenced by several factors, such as the
70	geological matrix and the geochemical conditions of the coastal aquifers (Charette et al.,
71	2005; Mcallister et al., 2015; Santos et al., 2012), the potential impact of human
72	activities (Beck et al., 2009; de Sieyes et al., 2008; Trezzi et al., 2016) and the type of
73	discharge (e.g. karstic or detrital) (Tovar-Sánchez et al., 2014b).
74	
75	Globally SGD has been estimated to be 3 to 4 times higher than riverine discharge into
76	the oceans (Kwon et al., 2014). In the Mediterranean Sea, a semi-enclosed oligotrophic
77	basin, SGD is comparable or even larger (up to 16 times) than the riverine water flow
78	(Rodellas et al., 2015a). In this basin, the role of SGD in biogeochemical cycles is also

prominent since the estimated SGD-driven macronutrient fluxes (DIN, DIP and DSi)
are comparable or even higher than the riverine and atmospheric fluxes (Rodellas et al.,
2015a). The relevance of SGD in delivering dissolved trace metals (dTM) to the
Mediterranean Sea has been highlighted in some local areas, characterized by the
absence of riverine discharge (Rodellas et al., 2014; Tovar-Sánchez et al., 2014b; Trezzi
et al., 2016).

The aim of this study is to quantify SGD-driven dTM fluxes at regional scale and evaluate their significance. We determine these fluxes in the North Western (NW) Mediterranean Sea and compare them to other external sources (i.e. riverine discharge and atmospheric deposition). This area was considered an appropriate study site for conducting such a comparison for three main reasons: 1) the existence of several studies reporting local estimations of SGD flows that can be used to obtain a reliable regional estimate of SGD-driven dTM fluxes (i.e., Baudron et al., 2015; Garcia-Solsona et al., 2010a, 2010b; Mejías et al., 2012; Ollivier et al., 2008; Rodellas et al., 2015b, 2014, 2012; Stieglitz et al., 2013; Tovar-Sánchez et al., 2014b; Trezzi et al., 2016); 2) the large riverine discharge in this area compared with most zones of the Mediterranean basin (Ludwig et al., 2009); 3) the influence of atmospheric deposition originating from Europe and the Saharan region (Guerzoni et al., 1999; Guieu et al., 1997).

98 2 Methodology

100 2.1 The NW Mediterranean Sea

102 The Mediterranean Sea is a semi-enclosed basin connected to the Atlantic Ocean

103 through the Strait of Gibraltar, characterized by a net export of nutrients to the Atlantic

Ocean, that leads to oligotrophic conditions in the whole basin (Béthoux et al., 1998). Climate conditions of the Mediterranean Sea generally consist of dry summers and rainy autumns and winters, with larger mean annual precipitation in the north and western parts of the basin. The study area comprises the NW Mediterranean zone (Eastern Spanish coast, including the Balearic Islands, and French Mediterranean coast, up to Marseille city), encompassing a coastline of about 3,500 km and a surface area of about 180,000 km² (Figure 1). The Rhone and the Ebro are the main rivers in this area, representing more than the 70% of the total riverine discharge to the Western Mediterranean Sea, with mean water flows of $54 \cdot 10^9$ and $13 \cdot 10^9$ m³ y⁻¹, respectively (Ludwig et al., 2009). Groundwater inputs occur via both detrital and karstified coastal aquifers. Fractured karstified carbonated aquifers constitute a large portion (about the 40%) of the French and Spanish coasts, including the Balearic Islands (Bakalowicz, 2015, 1999; Instituto Geologico Minero de España (IGME), 1986). 2.2 Sampling Groundwater samples representative of the water discharging into the sea (i.e. SGD end-members) were collected between November 2013 and June 2015 at several locations along the Spanish and French Mediterranean coasts: 10 samples were collected from karstic systems and 8 from detrital systems (Figure 1; Table 1). The karstic waters corresponded to 3 different coastal carbonate aquifers and were collected mostly from flowing coastal springs associated with fractures (Garbí, Suís, Badum, Font Centre, Font South, Estramar, La Palme). One of these springs (Garbí, located close to the Ebro delta) was sampled three times (December 2013; July 2014;

May 2015) in order to evaluate the variability in metal concentrations of this source. Groundwater flowing through detrital aquifers was sampled at 7 sites along the Spanish coast. Five of these end-members were obtained in beaches presumably characterized by the flow of fresh groundwater to the sea, from a manual piezometer placed down to the depth where groundwater seeping through the sand was found (Empuriabrava, La Fosca North, La Fosca South, Arenys and Sitges); one was collected in the channel connecting a coastal marshland to the sea (Peníscola), which is representative of the groundwater converging into the coastal wetland (Rodellas et al., 2012; Zarroca et al., 2014); the other two samples were collected from a coastal piezometer, sampled twice after a rainy period (Argentona).

For each sample, 125 mL of water were directly collected following trace metal clean
techniques (Tovar-Sánchez, 2012). Water was pumped through an acid-clean Teflon
tube using a peristaltic pump, filtered with a 0.2 μm SuporCap filter and stored in acidcleaned plastic bottles. Samples were then acidified to pH < 2 with trace metal grade
HCl acid. At each sampling point, salinity was measured with an YSI 556 handheld
probe.

147 2.3 Analysis

Concentrations of dTM (Cd, Co, Cu, Fe, Ni, Pb, Zn) in groundwater samples were
determined by stripping voltammetry using a Metrohm VA-797 Computrace and a
Metrohm 663 VA. These instruments were equipped with a hanging mercury drop
electrode as the working electrode, Ag/AgCl as the reference electrode and a Pt wire as
the counter electrode. Before the determination, water samples were UV-digested for 3

154	h in a UV digestor equipped with a high-pressure mercury lamp at 200 W (Achterberg
155	and Van den Berg, 1994). Two different analytical methods were employed depending
156	on the metal to be determined. Anodic stripping voltammetry was used for the
157	determination of Zn, Pb and Cd (Gardiner and Stiff, 1974). Adsorptive cathodic
158	stripping voltammetry with mixed ligands was utilized for Fe (Obata and Van den Berg,
159	2001) and Cu, Ni and Co (Santos-Echeandía, 2011). Each sample was analyzed at least
160	two times to check the precision of the measurement. The relative standard deviation
161	was below 11%. The accuracy of the analytical procedure was assessed by the analyses
162	of CASS 4 (NRC-CNRC), a nearshore seawater certified reference material (CRM).
163	Results for CASS 4 differed within 10% of the certified values for Zn, Cu, Fe, Ni and
164	Cd and within 17% for Pb. The detection limits were 0.04 nmol L^{-1} for Cd, 0.06 nmol L^{-1}
165	¹ for Co, 0.31 nmol L^{-1} for Cu, 3.9 nmol L^{-1} for Fe, 0.12 nmol L^{-1} for Ni, 0.04 nmol L^{-1}
166	for Pb and 0.85 nmol L^{-1} for Zn. Results were corrected for blank analyses.
167	
168	2.4 Calculations of continental trace metal fluxes
169	
170	Metal concentrations in SGD end-members and magnitudes of SGD water flows to the
171	NW Mediterranean Sea are required in order to quantify the SGD-driven dTM fluxes to
172	the study area. We differentiated karstic from detrital SGD systems, because the
173	hydrogeological setting of the aquifer and the discharge type (i.e. rapid discharges
174	through fractures in karstified carbonates and slow diffuse flows through permeable
175	sediments in detrital aquifers) can affect the chemical composition of SGD (Tovar-
176	Sánchez et al., 2014b).
177	SGD water flows into the NW Mediterranean Sea have been quantified by using Ra
178	isotopes and ²²² Rn as tracers of the process in several locations of the Spanish and

French coasts in the last decade, both in detrital contexts (Baudron et al., 2015; Ollivier et al., 2008; Rodellas et al., 2014, 2012; Tovar-Sánchez et al., 2014b; Trezzi et al., 2016) and in karstified carbonate formations (Garcia-Solsona et al., 2010a, 2010b; Mejías et al., 2012; Rodellas et al., 2015b; Stieglitz et al., 2013; Tovar-Sánchez et al., 2014b) (Supporting Information, Appendix A). We used SGD estimations normalized to the shoreline length of the different sites to estimate SGD-driven dTM fluxes. When the studies focused on specific sites did not report shore-normalized SGD flows, we used the values reported in Rodellas et al. (2015a), where the SGD flows were divided by the approximate shore length or the bay mouth width of the study area. We also applied this methodology to obtain shore-normalized SGD flows for those locations not included in Rodellas et al. (2015a). We considered-the median values and the ranges between the 1st and the 3rd quartiles of the data set as the best representation of shore-normalized water flows in karstic and detrital SGD systems (Supporting Information, Appendix A).

Trace metal concentrations in SGD end-members have been reported in the literature only for few sites in the NW Mediterranean Sea (Rodellas et al., 2014; Tovar-Sánchez et al., 2014b; Trezzi et al., 2016). Therefore, we integrated these data with additional SGD end-members of different salinities collected along the Spanish and French Mediterranean coasts (Table 1). As for the water flow estimations, the median values and the ranges between the 1st and the 3rd quartiles were considered as the best representation of metal concentrations in karstic and detrital SGD systems. When dTM concentrations measured in water samples were lower than the limits of detection (which was the case for Cd (samples Garbí, Suís, badum, peníscola and Arenys), for Co (samples Garbí) and for Pb (samples Garbí and Font Centre)), the limit of detection itself was used in the calculations, leading to an upper limit in the estimation of the flux.

Dissolved metal concentrations in karstic and detrital SGD end-members were multiplied by the respective SGD water flows. Karstic and detrital SGD-driven dTM fluxes to the NW Mediterranean Sea were calculated separately, classifying 40% of the coastline as karstic systems and the remaining 60% as detrital. The sum of these metal fluxes was considered as the total contribution of SGD to the study area. Coastline-normalized karstic and detrital SGD dTM fluxes were multiplied by the corresponding shore length (3,500 km) in order to obtain values in mol y^{-1} .

Dissolved trace metal concentrations for the main rivers of the NW Mediterranean Sea (Rhone and Ebro) reported in the literature (Elbaz-Poulichet et al., 1996, 1989; Guieu et al., 1997, 1993; Ollivier et al., 2011; UNEP/MAP/MED POL, 2003) were used for the calculation of fluxes of dTM associated to riverine discharge (Supporting Information, Appendix B). These rivers were considered the most representative rivers of the area, as they account for a large portion of the total riverine discharge (Guieu et al., 1997). The median metal concentrations and the ranges between the 1^{st} and the 3^{rd} quartiles of the data set were considered as the best representation of dissolved concentrations of Cd, Cu, Ni, Pb and Zn in the river end-member. For Co and Fe, dissolved concentrations in the Rhone and the Ebro Rivers are reported only in a limited number of works (Elbaz-Poulichet et al., 1989; Guieu et al., 1997, 1993), so that we calculated the mean of the concentrations of these metals and the relative standard deviations. Dissolved metal concentrations were multiplied by the sum of the water flows from rivers in the study area $(71 \cdot 10^9 \text{ m}^3 \text{ y}^{-1})$ (UNEP/MAP/MED POL, 2003) in order to obtain the fluxes of dTM through rivers into the NW Mediterranean Sea.

228	Dissolved trace metal fluxes from the atmospheric deposition were estimated from
229	literature data for the combination of wet and dry deposition metal fluxes to the
230	Mediterranean Sea (Bonnet and Guieu, 2006; Chester et al., 1999; Guerzoni et al., 1999;
231	Guieu et al., 2010, 1997, 1993; Migon et al., 1997, 1991; Ridame et al., 1999; Sandroni
232	and Migon, 2002) (Supplementary Information, Appendix C). When values of dTM
233	fluxes were not directly reported, we calculated them from data on the total fraction of
234	metals (dissolved + particulate), by using the percentages of partitioning between the
235	different fractions provided by Guieu et al. (1997). Mean values of atmospheric dTM
236	fluxes (in mol km ⁻² y ⁻¹) for each literature work are reported in the Supplementary
237	Information, Appendix C. The median values and the ranges between the 1 st and the 3 rd
238	quartiles of the data set were considered as the best representation of atmospheric
239	dissolved fluxes of Cd, Cu, Fe, Ni, Pb and Zn to the NW Mediterranean Sea. For Co,
240	data of atmospheric fluxes are reported only in a limited number of works (Chester et
241	al., 1999; Guieu et al., 1997, 1993), so that we used the mean dissolved atmospheric
242	fluxes and the relative standard deviations. The obtained metal atmospheric fluxes were
243	multiplied by the surface of the study area (180,000 km ²) to obtain atmospheric metal
244	fluxes in mol y ⁻¹ . For trace metals of anthropogenic origin such as Cd, Pb and Zn, the
245	calculated atmospheric fluxes represent an upper limit, due to the decrease of their
246	emission in the atmosphere since the second half of the 1980s (Heimbürger et al., 2010).
247	
248	3 Results and Discussion
249	
250	3.1 Metal characterization of SGD
251	

SGD end-members spanned a wide range of salinities: karstic SGD had salinities
ranging between 0.3 and 9.7, whereas detrital SGD samples were in the range of 0.2–36
(Table 1). The higher variability in salinity for detrital SGD with respect to karstic SGD
is related to the intrusion of recirculated seawater through permeable beach sediments
(Moore, 1999).

The variability of trace metal concentrations in SGD systems depends on the geological composition of the coastal aquifers, the possible groundwater contamination through anthropogenic activities (Beck et al., 2009; Trezzi et al., 2016), the residence time of groundwater in the aquifers and the mixing of freshwater and seawater in the subterranean estuary (Beck et al., 2007; Moore, 1999). In karstic SGD, the ranges of dTM concentrations (in nmol L^{-1}) were <0.04 – 3.1 for Cd, <0.06 – 4.0 for Co, 0.68 – 24 for Cu, 18 - 840 for Fe, 1.6 - 43 for Ni, <0.04 - 2.1 for Pb and 7.2 - 300 for Zn. In detrital SGD, the ranges of dTM concentrations (in nmol L^{-1}) were <0.04 - 14 for Cd, 0.10 - 6.9 for Co, 1.7 - 160 for Cu, 44 - 460 for Fe, 4.5 - 83 for Ni, 0.19 - 7.4 for Pb, and 13 – 2100 for Zn.

Figure 2 shows the comparison between metal concentrations in karstic and detrital SGD end-members, for which ranges between the 1^{st} and the 3^{rd} quartiles were reported. Detrital SGD was distinctively more enriched in Co, Cu and Ni than karstic SGD. For the other trace metals (Cd, Fe, Pb and Zn), the ranges of concentrations in karstic and detrital SGD were comparable, although the median values of Fe were higher in karstic SGD (up to 1.5 times) and the median values of Pb were higher in detrital SGD (up to 2.5 times). There are two possible main explanations for these differences in dTM concentrations between karstic and detrital SGD. The different geological matrix of the karstic and detrital aquifers can contribute differently to the chemical composition of the interacting groundwater; while karstic systems are composed predominantly by

carbonate minerals, detrital systems can be characterized by different lithologies and a consequent larger variability of minerals. Secondly, the geochemical reactions that occur in the subterranean estuary, before groundwater discharges into the coastal sea, largely affect solute concentrations in SGD. In karstic systems, infiltrated groundwater can be rapidly transferred to the coastal sea due to the presence of underground fractures and preferential pathways (Garcia-Solsona et al., 2010b; Gonneea et al., 2014; Tovar-Sánchez et al., 2014b). Thus, the SGD discharging into the coastal sea through coastal springs is generally oxygenated and characterized by a limited interaction with the geological matrix of the aquifer. Contrary, detrital SGD flows across the permeable sediments of the coastal aquifers, where it mixes with recirculated seawater before discharging into the sea. Detrital SGD is thus subjected to several geochemical transformations such as redox-controlled solubility, adsorption on organic matter and/or on Fe and Mn oxides, release from these oxides and desorption from sediments (Charette and Sholkovitz, 2006). Co and Ni are redox-sensitive elements controlled by Mn geochemistry in porewater of coastal and shelf sediments (Beck et al., 2007, 2010; Santos-Echeandia et al., 2009). The higher concentrations of Co and Ni in detrital SGD samples with respect to the karstic ones may be related to their release from Mn oxides during the diagenetic remobilization of Mn (Beck et al., 2010; Santos-Echeandia et al., 2009). On the other hand, Cu is strongly associated to the organic matter (Du Laing et al., 2009; Santos-Echeandia et al., 2009; Shaw et al., 1990), which is commonly more abundant in detrital systems than in the karstic ones. This may explain the higher concentration of Cu in detrital SGD. The comparable concentrations of dissolved Fe between karstic and detrital SGD may be due to the oxygenated conditions of karstic SGD and to the precipitation of Fe, with the formation of Fe oxides, when recirculated seawater mixes with groundwater in detrital systems (Charette and Sholkovitz, 2006,

2002; Windom et al., 2006). Finally, for Cd, Pb and Zn, the generally comparable ranges of concentrations in karstic and detrital SGD may be ascribed to their lower redox-sensitivity (for Pb and Zn) (Santos-Echeandia et al., 2009), to their lower association with the organic matter (for Cd, Pb and Zn) (Roux et al., 1998; Santos-Echeandia et al., 2009) or to their removal from the solution due to the presence of the so-called Fe-curtain (for Cd and Zn) (Charette and Sholkovitz, 2006, 2002; Trezzi et al., 2016). These properties may prevent the detrital SGD to get distinctly more enriched in Cd, Fe, Pb and Zn with respect to karstic SGD.

The karstic SGD end-member analysed in three different seasons (Garbí) displayed variability in dTM concentrations, in particular for Cd (< 0.04 - 0.49 nmol L⁻¹) and Fe $(35 - 840 \text{ nmol } \text{L}^{-1})$. The detrital SGD system sampled twice in 10 days after a rain event (Argentona) also showed some variability in metal concentrations for Cd, Cu, Ni and Zn, in addition to a variation in salinity (Table 1). This temporal variability of Garbí and Argentona samples illustrated the difficulty on establishing appropriate SGD end-members, which is traditionally one of the most significant uncertainties in the investigation of SGD processes. The different dTM concentrations showed by Garbí and Argentona samples were generally within the ranges between minimum and maximum values measured in the other SGD end-members. Therefore, we assume that the temporal variability of the other SGD end-members was also included in the ranges of dTM concentrations used as the best representation of the SGD end-member in the study area (see Section 2.4).

325 Dissolved metals concentrations in SGD end-members were higher than those of 326 seawater of the open Western Mediterranean Sea $(2.6 - 4.5 \text{ nmol L}^{-1} \text{ for Zn}, 1.1 - 2.3)$

nmol L⁻¹ for Cu, 3.2 - 3.6 nmol L⁻¹ for Ni, 1.4 - 8.0 nmol L⁻¹ for Fe, 0.13 - 0.28 nmol L⁻¹ for Pb, 0.05 - 0.17 nmol L⁻¹ for Co and 0.06 - 0.08 nmol L⁻¹ for Cd) (Tovar-Sánchez et al., 2014a; Yoon et al., 1999) for most of the metals, as shown in Figure 3. This was particularly evident for Zn and Fe (up to two orders of magnitude). Concentrations of Pb in SGD were comparable to the ones of open seawater for most of the samples, indicating that SGD probably is not a relevant source of dissolved Pb to the NW Mediterranean Sea.

The concentrations of dTM in SGD end-members (obtained unifying the data set on karstic and detrital systems) were compared to those reported in the literature for the Rhone and the Ebro Rivers (Figure 3). For the data set presented in this work, the clearest differences were the higher concentrations of dissolved Zn in SGD and dissolved Cu in the rivers. For the other trace metals, the ranges of concentrations were comparable in SGD and in rivers, although the median concentrations of Cd, Co, Ni and Pb in rivers were higher than in SGD. These differences may be related to the distinctive environments of coastal aquifers and rivers, with steep redox gradients in subterranean estuaries and the presence of microbes that can affect the speciation and mobility of trace metals (Knee and Paytan, 2011; O'Connor et al., 2015). The comparison of dTM concentrations in SGD and rivers confirmed that SGD must be evaluated as a potential source of metals to the coastal ocean, given that dTM concentrations of SGD end-members are at least similar to those of rivers for most of the metals. Thus, the volume of riverine and SGD water discharges will determine the relative significance of these two inputs of dTM to the coastal sea.

351 3.2 Comparison of trace metal fluxes into the NW Mediterranean Sea

-	352	
1 2 3	353	Trace metal inputs through SGD are conditioned by the multiple and complex processes
4 5	354	occurring during the transport through the sediments and/or aquifer, which can affect
6 7 8	355	the dTM concentrations of SGD. Indeed, the selection of appropriate SGD end-
9 10	356	members is one of the most challenging points in the assessment of SGD-driven metal
11 12 13	357	fluxes to the ocean. The SGD end-members collected in this work were certainly
14 15	358	representative of the water effectively discharging into the sea in the case of the coastal
16 17 18	359	karstic springs. For detrital systems, the most real SGD end-member was determined by
19 20	360	collecting several SGD samples of different salinities (fresh and brackish groundwater
21 22	361	and recirculated seawater) and by including literature data of dTM already considered
23 24 25	362	as representative of the SGD end-members by the respective authors. This approach
26 27	363	permits to obtain a first approximation of SGD-driven dTM fluxes, whose magnitude
28 29 30	364	can be compared to riverine discharge and atmospheric deposition, with the aim of
31 32	365	evaluating the relevance that SGD can have in the NW Mediterranean Sea.
33 34 35	366	
36 37	367	A summary of the calculated SGD-driven, riverine and atmospheric dTM fluxes to the
38 39	368	NW Mediterranean Sea is shown in Figure 4 and in Table 2.
40 41 42	369	SGD-driven dTM fluxes (in 10^6 mol y ⁻¹) to the NW Mediterranean Sea are (0.0007 –
43 44	370	(0.03) for Cd, $(0.004 - 0.11)$ for Co, $(0.09 - 1.9)$ for Cu, $(1.8 - 29)$ for Fe, $(0.09 - 1.9)$
45 46 47	371	for Ni, $(0.002 - 0.06)$ for Pb and $(0.38 - 12)$ for Zn. Trace metals inputs through SGD
48 49	372	can be subjected to seasonal variability. Unfortunately, detailed information about
50 51 52	373	temporal characterization of SGD (metal concentrations and/or water flow) in each
53 54	374	coastal aquifer considered in the work is not available. Notice that the repeated
55 56	375	sampling of two SGD end-members, collected twice and three times (Argentona and
57 58 59	376	Garbí, respectively), showed a minimum variability of the dTM concentrations
60 61		
62 63		1 -
64		15

377 compared to the range of concentrations reported for groundwater samples. Thus, even
378 considering temporal variability of SGD, the magnitude of the calculated SGD-driven
379 dTM fluxes can be still compared to continental inputs of dTM via riverine discharge
380 and atmospheric deposition.

381 Dissolved trace metal fluxes from rivers to the NW Mediterranean Sea (in 10^6 mol y^{-1}),

calculated using data from the literature as explained in Section 2.4, are (0.02 - 0.03)

383 for Cd, (0.08 - 0.09) for Co, (1.9 - 2.4) for Cu, (13 - 17) for Fe, (1.5 - 1.7) for Ni, (0.01 - 0.03) for Pb and (1.1 - 1.4) for Zn.

Dissolved trace metal fluxes from atmospheric deposition to the NW Mediterranean Sea (in 10^6 mol y⁻¹), calculated with literature data as explained in Section 2.4, are (0.07 -0.44) for Cd, (0.04 - 0.52) for Co, (2.2 - 3.5) for Cu, (91 - 280) for Fe, (1.1 - 2.5) for Ni, (1.1 - 1.6) for Pb and (15 - 110) for Zn.

Our estimates of the continental inputs of dTM into the NW Mediterranean Sea show that riverine metal fluxes of dissolved Cd, Co, Fe, Ni, Pb and Zn fall within the ranges of the SGD-driven fluxes. However, the median SGD-driven fluxes of these dTM are distinctively lower than riverine fluxes (from 2 to 7 times, depending on the metal), with the exception of Zn, which is comparable (Figure 4; Table 2). The SGD-driven flux of dissolved Cu is distinctly lower than the riverine one. This comparison between SGD and rivers does not consider riverine fluxes of particulate material, which are thought to be important for dissolved elements in seawater in relation to the potential dissolution of the transported particles (Jeandel and Oelkers, 2015; Oelkers et al., 2011). Compared to atmospheric dTM fluxes, the ranges of SGD-driven fluxes of dissolved Cd, Cu, Fe, Pb and Zn are distinctively lower (Figure 4; Table 2). The SGD-driven

fluxes of dissolved Co and Ni are also generally lower than the atmospheric ones, showing a difference of one order of magnitude for the median values. 3.3 Spatial and temporal influence of the continental trace metal fluxes The presented comparison between continental inputs of dTM to the NW Mediterranean Sea did not consider the spatial and temporal distribution of SGD, rivers and atmospheric deposition. These distributions are different (Figure 5) and should be taken into account for an appropriate evaluation of the effects of the sources of dTM on coastal geochemical cycles. Conversely to SGD and riverine discharge, which are short-scale coastal processes, atmospheric deposition occurs over the whole NW Mediterranean basin. Consequently, even if the atmospheric dTM fluxes calculated in Section 3.2 are clearly higher than those through SGD, the real contribution of these two inputs to the coastal sea should be evaluated dividing the calculated dTM fluxes by the respective areas of influence. For the atmospheric deposition, the area of influence is the total study area (180,000 km^2). In the case of SGD, several local studies have highlighted that this process usually does not reach a distance offshore higher than 2-3 km (on the base of Ra isotopes and/or salinity differences in coastal seawater) and that inputs of macronutrients and metals through SGD decrease towards the open seawater, being concentrated in the first hundreds of meters (Gonneea et al., 2014; Mejías et al., 2012; Moore, 2003; Rodellas et al., 2014; Trezzi et al., 2016; Windom et al., 2006).

422 Dissolved trace metals supplied to this coastal seawater can also be removed from the

423 water column by means of biogeochemical processes (Bruland and Lohan, 2003).

424 Therefore, if we consider a distance of 3 km offshore as an upper limit affected by SGD

425 and multiply it by the 3,500 km of coastline of the study area, a maximum area of

influence for SGD of about 10,500 km² is obtained. Thus, we calculate the area-weighted SGD-driven dTM fluxes, which are a lower limit (at least for Cu, Fe, Ni and Zn) of the possible SGD contribution to the coastal area. In the case of Cd, Co and Pb, the obtained SGD values are not necessarily a lower limit, since for the samples characterized by no detectable metal concentrations, the limit of detection itself was considered in the calculations (see Section 2.4). The comparison of these SGD-driven fluxes with the atmospheric dTM fluxes (in mol y^{-1} km⁻²) highlights that SGD inputs to the coastal sea are comparable or higher than atmospheric deposition for all the metals studied here, with the exception of Pb (Figure 6). SGD and river inputs have also a significant difference in their spatial distribution. Trace metal inputs driven by SGD are ubiquitous all along the coast, since fresh groundwater discharges anywhere an aquifer with a positive head relative to sea level is hydraulically connected with the sea (Johannes, 1980) and the recirculation of seawater through the coastal aquifer is also expected to occur in most of the coastal systems (Knee and Paytan, 2011). On the contrary, riverine discharge is limited to the surroundings of river mouths. River plumes are the maximum boundaries where dTM provided by rivers could be detected, if they are not removed before through biological uptake, scavenging by particles or precipitation (Bruland and Lohan, 2003). River plumes are influenced by winds and marine currents: for example, the plume of the Ebro River is usually deviated southwards and reach a maximum distance of 80 km from the river mouth (Palanques and Drake, 1990). Consequently, no direct influence of this river would be expected in the northern area and beyond 80 km in the southern zone. For smaller rivers or ephemeral streams, the river influence would be restricted to a shorter distance from the river mouth. Thus, in areas characterized by the absence of

rivers or river plumes, SGD, together with atmospheric deposition, is the major sourceof dTM to the coastal sea.

Temporal variability should also be considered when comparing the different continental inputs of dTM to the NW Mediterranean Sea. Thus, whilst SGD and rivers can be considered a permanent source of dTM to the coastal areas (even if they are affected by water flow fluctuations on annual scale), atmospheric deposition in the Mediterranean Sea has a very high intra-annual and inter-annual variability, with most of the flux concentrated in few strong events during the year (Avila et al., 1998; Guieu et al., 2010). This is particularly true for crustal-derived trace metals (Fe, Co and part of Ni and Cu), whose atmospheric deposition is related principally to Saharan dust events (Heimbürger et al., 2010). Therefore, the relative significance of SGD-driven dTM fluxes to the NW Mediterranean Sea can be actually higher in absence of dust events and lower during the dust events.

465 3.4 Relevance of SGD for the global Mediterranean Sea

The Mediterranean Sea is one of the most oligotrophic and exploited seas in the world, where the sources of nutrients are limited (Macias et al., 2014). Atmospheric deposition (Guerzoni et al., 1999; Guieu et al., 2010, 1997) and riverine runoff (Ludwig et al., 2009; Macias et al., 2014) have been traditionally considered the main continental sources of nutrients, while other sources such as SGD are not commonly considered or documented. However, the relevance of SGD as a source of macronutrients to the whole Mediterranean basin was recently demonstrated (Rodellas et al., 2015a) and the present study represents the first evidence of the potential relevance of SGD as a source of dTM (e.g. Cd, Co, Cu, Fe, Ni, Pb and Zn) at regional scale. While this study is particularly
focused on the NW Mediterranean Sea, the paucity of data on dTM concentrations of
SGD end-members of the South Western and Eastern Mediterranean basins and the
difficulty to obtain these data currently prevent the extension of these calculations to the
whole Mediterranean Sea. However, some general considerations about the key role of
SGD in contributing dTM to the whole Mediterranean Sea can be made.

Although median SGD-driven dTM fluxes seem to be lower (for Cd, Co, Cu, Fe, Ni and Pb) or comparable (for Zn) with respect to riverine fluxes in the NW Mediterranean zone, it should be noticed that this area is characterized by the presence of the second (Rhone) and the forth (Ebro) major rivers of the Mediterranean Sea (Ludwig et al., 2009). If we consider other areas of the Mediterranean basin, the riverine discharge is distinctively lower, with the exception of the Adriatic Sea (Po river) and the area of the Nile delta (Ludwig et al., 2009). This is particularly true for the arid and semi-arid regions of the Mediterranean Sea, such as the Eastern coast, the African coast and many islands. For instance, the riverine discharge along 4,400 km of coastline from Morocco to Libya is less than $10^9 \text{ m}^3 \text{ y}^{-1}$ (Ludwig et al., 2009), whereas the riverine discharge in the NW Mediterranean Sea, with a slightly shorter coastline (3,500 km), is more than 70 times higher. A first-order estimation of SGD-driven dTM fluxes for the African coast could be

495 obtained with the same procedure described for the NW basin, using the shore496 normalized SGD water flow of the whole Mediterranean Sea (Rodellas et al., 2015a)
497 and assuming the same dTM concentrations of SGD end-members from the NW
498 Mediterranean area. Thereby, SGD-driven dTM fluxes from the African coast would be
499 distinctively higher than riverine metal fluxes (up to 3 orders of magnitude), assuming

similar concentrations in rivers of North Africa and the NW Mediterranean Sea (notice that recent data on the African Moulouya River showed dTM concentrations comparable or lower than those of the Ebro and Rhone Rivers (Tovar-Sánchez et al., 2016)). SGD would thus be a much more significant source of dTM than rivers for coastal seawater in the arid and semi-arid regions of the Mediterranean Sea. 3.5 Biogeochemical implications of SGD Most of the trace metals analysed in this work (i.e. Cd, Co, Cu, Fe, Ni and Zn) are essential micronutrients for the planktonic community, as their deficiency can limit oceanic plankton production, whereas they can be toxic at high levels (Jordi et al., 2012; Lafabrie et al., 2013; Morel and Price, 2003; Twining and Baines, 2013). Considering that SGD is a significant source of dTM to the coastal sea, in particular in those areas where the presence of rivers is limited, SGD may potentially have a strong impact on the coastal productivity of the Mediterranean Sea. The involvement of SGD on biogeochemical cycles of the Mediterranean Sea was already emphasized at regional scale for macronutrient inputs (DIN, DIP and DSi) (Rodellas et al., 2015a). Therefore,

taking into account the results of this study, we hypothesize that the significance of

518 SGD for coastal biological communities in the oligotrophic Mediterranean Sea is related

link between SGD-driven dTM fluxes to the coastal sea and coastal productivity is a

519 not only to inputs of macronutrients but also of bioactive trace metals. However, the

521 complex topic that should be further investigated, as dTM can be removed from the

522 coastal seawater by several biogeochemical processes (Bruland and Lohan, 2003).

523 Nevertheless, SGD should be certainly considered in studies on the biogeochemistry of

524 coastal areas and in the assessment of trace metal budgets.

Conclusions

This study is a first effort to estimate regional inputs of dTM (Cd, Co, Cu, Fe, Ni, Pb and Zn) through SGD to the oligotrophic Mediterranean Sea. SGD-driven dTM fluxes, calculated for the NW basin and compared to riverine discharge and atmospheric deposition, reveal that SGD is a significant source of dTM to the coastal Mediterranean Sea. The relevance of SGD may be even higher in coastal areas of the Southern and Eastern Mediterranean Sea or in many islands, which are characterized by scarce riverine discharge. Therefore SGD should be taken into account for the assessment of trace metal budgets and for biogeochemical studies in coastal areas, as some of the metals delivered by this process are crucial micronutrients for primary productivity in the ocean. Further investigations on trace metal inputs through SGD in the Mediterranean Sea are required in order to improve the estimation of SGD fluxes presented in this study. Indeed, spatial and temporal variability of trace metal concentrations in SGD end-members, as well as relations between concentrations and magnitude of water flows, need to be investigated in a large number of subterranean estuaries. At the same time, the present data set should be expanded with the characterization of metal inputs through SGD in areas that are not well studied at the moment, such the African Coast. SUPPORTING INFORMATION Karstic and detrital SGD-driven flows reported in the literature for local studies in the NW Mediterranean Sea (Appendix A); dissolved trace metal concentrations of the Rhone and the Ebro Rivers reported in the literature (Appendix B); atmospheric

dissolved trace metal fluxes to the Mediterranean Sea reported in the literature(Appendix C).

553 ACKNOWLEDGMENTS

This project has been partially funded by the European Union Seventh Framework

555 Programme through the MetTrans Initial Training Network, Marie Curie Actions, which

also provide financial support through a PhD fellowship to G.T. (EU FP7-People-2011-

557 ITN-290336). Support provided by the Generalitat de Catalunya to MERS (2014 SGR –

1356) is also acknowledged. VR acknowledges financial support from the European

559 Union's FP7 (Marie Curie Actions PCOFUND-GA-2013-609102), through the

560 PRESTIGE programme coordinated by Campus France. The Spanish Government

561 (MINECO) is acknowledged for support to E.G-S through a post-doctoral grant (FPDI-

562 2013-15660) and support of ECOALFACS project (CTM2009-09581) to the ICM-

563 CSIC. This research is also a contribution to the ANR @RAction chair (ANR-14-

564 ACHN-0007-01) and Labex OT-Med (ANR-11-LABEX-0061) funded by the

565 "Investissements d'Avenir" program through the A*MIDEX project (ANR-11-IDEX-

566 0001-02) of the French National Research Agency (ANR).

	568	
1 2	5(0	Added and E.D. Man day Dave C.M.C. 1004 In line alternial direction of natural
3	569	Achterberg, E.P., van den Berg, C.M.G., 1994. In-line ultraviolet-digestion of natural
4	570	water samples for trace metal determination using an automated voltammetric
5 6	571	system. Anal. Chim. Acta 291, 213–232. doi:10.1016/0003-2670(94)80017-0
7	572	Avila, A., Alarcón, M., Queralt, I., 1998. The chemical composition of dust transported
8	573	in red rains—its contribution to the biogeochemical cycle of a holm oak forest in
9	574	Catalonia (Spain). Atmos. Environ. 32, 179–191. doi:10.1016/S1352-
10 11	575	2310(97)00286-0
12^{12}	0.0	
13	576	Bakalowicz M 2015 Karst and karst groundwater resources in the Mediterranean
14	570	Environ Earth Sci $74.5-14$ doi:10.1007/s12665-015-4239-4
15	577	Elivitoli. Eaitil Sci. 74, 3–14. doi:10.1007/\$12003-013-4239-4
16	F70	Debalancian M. 1000 Comprison of antion des researches on source sourcemaines
1.7 1.0	5/8	Bakalowicz, M., 1999. Connaissance et gestion des ressources en eaux souterraines
18 19	579	dans les regions karstiques. Gestion 3, 1–44.
20		
21	580	Baudron, P., Cockenpot, S., Lopez-Castejon, F., Radakovitch, O., Gilabert, J., Mayer,
22	581	A., Garcia-Arostegui, J.L., Martinez-Vicente, D., Leduc, C., Claude, C., 2015.
23	582	Combining radon, short-lived radium isotopes and hydrodynamic modeling to
24	583	assess submarine groundwater discharge from an anthropized semiarid watershed
25	584	to a Mediterranean lagoon (Mar Menor, SE Spain). J. Hydrol. 525, 55–71.
20 27	585	doi:10.1016/j.jhydrol.2015.03.015
28		
29	586	Beck, A.J., Cochran, J.K., Sañudo-Wilhelmy, S.A., 2010. The distribution and
30	587	speciation of dissolved trace metals in a shallow subterranean estuary Mar Chem
31	588	121 145–156 doi:10.1016/j marchem 2010.04.003
32	000	121, 115 150. doi:10.1010/j.indionom.2010.01.005
33 34	589	Beck A I. Cochran I.K. Sañudo-Wilhelmy S A. 2000 Temporal Trends of
35	500	Dissolved Trace Metals in Jamaice Rev. NV: Importance of Westewater Input and
36	590 E01	Submaring Croundwater Discharge in an Urban Estuary Estuarias and Coasts 22
37	591	Submarine Groundwater Discharge in an Orban Estuary. Estuaries and Coasis 52 , 525 , 550 , 4_{ci} ; 10, 1007/212227, 000, 0140, 5
38	592	535-550. doi:10.1007/\$12237-009-9140-5
39	500	
40 41	593	Beck, Tsukamoto, Y., Tovar-Sanchez, A., Huerta-Diaz, M., Bokuniewicz, H.J., Sanudo-
42	594	Wilhelmy, S. a., 2007. Importance of geochemical transformations in determining
43	595	submarine groundwater discharge-derived trace metal and nutrient fluxes. Appl.
44	596	Geochemistry 22, 477–490. doi:10.1016/j.apgeochem.2006.10.005
45		
46	597	Béthoux, J.P., Morin, P., Chaumery, C., Connan, O., Gentili, B., Ruiz-Pino, D., 1998.
4/ / Q	598	Nutrients in the Mediterranean Sea, mass balance and statistical analysis of
40 49	599	concentrations with respect to environmental change. Mar. Chem. 63, 155–169.
50	600	doi:10.1016/S0304-4203(98)00059-0
51		
52	601	Bewers IM Yeats P a 1989 Transport of river-derived trace metals through the
53	602	coastal zone Netherlands I Sea Res 23 359–368 doi:10.1016/0077-
54	602	7579(89)90020_3
55 56	005	
55 57	604	Ronnat S. Guiou C. 2006 Atmographenic foreing on the engulation evaluation the
58	004 605	Bonnet, S., Oureu, C., 2000. Autospheric forcing on the annual from cycle in the
59	005	western wiediterranean Sea: A 1-year survey. J. Geophys. Kes. Ocean. 111, 1–13.
60	606	dol:10.1029/2005JC005215
61		
0⊿ ≲2		
		24

- Bowie, A.R., Whitworth, D.J., Achterberg, E.P., Mantoura, R.F.C., Worsfold, P.J., 2002. Biogeochemistry of Fe and other trace elements (Al, Co, Ni) in the upper Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 49, 605-636. doi:10.1016/S0967-0637(01)00061-9 Bruland, K.W., Donat, J.R., Hutchins, D.A., 1991. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555-1577. doi:10.4319/lo.1991.36.8.1555 Bruland, K.W., Lohan, M.C., 2003. Controls of Trace Metals in Seawater, in: Treatise on Geochemistry. Elsevier, pp. 23-47. doi:10.1016/B0-08-043751-6/06105-3 Charette, M. a., Buesseler, K.O., 2004. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol. Oceanogr. 49, 376-385. doi:10.4319/lo.2004.49.2.0376 Charette, M. a., Sholkovitz, E.R., Hansel, C.M., 2005. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochim. Cosmochim. Acta 69, 2095–2109. doi:10.1016/j.gca.2004.10.024 Charette, M.A., Sholkovitz, E.R., 2006. Trace element cycling in a subterranean estuary: Part 2. Geochemistry of the pore water. Geochim. Cosmochim. Acta 70, 811-826. doi:10.1016/j.gca.2005.10.019 Charette, M.A., Sholkovitz, E.R., 2002. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys. Res. Lett. 29, 1-4. doi:10.1029/2001GL014512 Chester, R., Nimmo, M., Preston, M.R., 1999. The trace metal chemistry of atmospheric dry deposition samples collected at Cap Ferrat: A coastal site in the Western Mediterranean. Mar. Chem. 68, 15-30. doi:10.1016/S0304-4203(99)00062-6 De Sieves, N.R., Yamahara, K.M., Layton, B.A., Joyce, E.H., Boehm, A.B., 2008. Submarine discharge of nutrient-enriched fresh groundwater at Stinson Beach, California is enhanced during neap tides. Limnol. Oceanogr. 53, 1434–1445. doi:10.4319/lo.2008.53.4.1434 Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., Tack, F.M.G., 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci. Total Environ. 407, 3972-85. doi:10.1016/j.scitotenv.2008.07.025 Duce, R.A., Liss, P.S., Merrill, J.T., Atlas, E.L., Hicks, B.B., Millertl, J.M., Prospero, J.M., Arimoto, R., Church, T.M., Ellis, W., Galloway, J.N., Hansen, L., Knap, A.H., Reinhardt, K.H., Soudine, A., Tsunogai, S., Wollast, R., Zhou, M., 1991. The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 5, 193–259. Elbaz-Poulichet, F., Garnier, J., Guan, D., Martin, J., Thomas, A., 1996. The conservative behaviour of trace metals (Cd, Cu, Ni and Pb) and as in the surface

1 2	645 646	plume of stratified estuaries: example of the Rhône River (France). Estuar. Coast. Shelf Sci. 42, 289–310. doi:http://dx.doi.org/10.1006/ecss.1996.0021
3 4 5	647 648	Elbaz-Poulichet, F., Guan, D., Seyler, P., Martin, J.M., Morley, N.H., 1989. Dissolved trace metals and metalloids in the Rhone river/estuarine system. Water Pollut, Res.
5 6 7	649	reports EROS 2000 395-422.
, 8 9	650	Elrod, V.A., Berelson, W.M., Coale, K.H., Johnson, K.S., 2004. The flux of iron from
10	651	continental shelf sediments: A missing source for global budgets. Geophys. Res.
11 12	652	Lett. 31, 2–5. doi:10.1029/2004GL020216
13	653	Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Garcés, E., Radakovitch, O.,
14	654	Mayer, A., Estradé, S., Basterretxea, G., 2010a. An assessment of karstic
15 16	655	submarine groundwater and associated nutrient discharge to a Mediterranean
17	656	coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry 97,
18 19	657	211–229. doi:10.1007/s10533-009-9368-y
20 21	658	Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Rodellas, V., Mejías, M.,
22	659	Ballesteros, B., Domínguez, J. a., 2010b. Groundwater and nutrient discharge
23	660	through karstic coastal springs (Castelló, Spain). Biogeosciences 7, 2625–2638.
24 25	661	doi:10.5194/bg-7-2625-2010
26	662	Gardiner, J., Stiff, M.J., 1974. The determination of Cadmium, Lead. Copper and Zinc
2.8	663	in ground water, estearine water, sewage and sewage effluent by anodic stripping
29 30	664	voltammetry. Water Res. 9, 517–523.
31	665	Gonneea M.E. Charette, M.A. Liu, O. Herrera-Silveira, J.A. Morales-Oieda, S.M.
32	666	2014 Trace element geochemistry of groundwater in a karst subterranean estuary
34	667	(Yucatan Peninsula Mexico) Geochim Cosmochim Acta 132, 31–49
35	668	doi:10.1016/i gca 2014.01.037
36	000	u01.10.1010/J.50u.2011.01.057
37	669	Guerzoni S., Chester, R., Dulac, F., Herut, B., Loÿe-Pilot, M.D., Measures, C., Migon
30 20	670	C Molinaroli E Moulin C Rossini P Savdam C Soudine A Ziveri P
40	671	1999. The role of atmospheric deposition in the biogeochemistry of the
41	672	Mediterranean Sea Prog Oceanogr 44 147–190 doi:10.1016/S0079-
42	673	6611(99)00024-5
43	0/5	0011()))000213
44 45	674	Guieu C. Chester R. Nimmo M. Martin I.M. Guerzoni S. Nicolas F. Mateu I.
46	675	Keyse S 1007 Atmospheric imput of dissolved and particulate metals to the
47	676	northwestern Mediterranean Deen Pas 14 655 674
48	070	normwestern mediterranean. Deep. Res. 44, 055–074.
49	677	Cuiou C. Loüa Bilot M. D. Banyahya I. Dufour A. 2010 Spatial variability of
50 51	670	other of the second sec
52	070	aunospheric fluxes of metals (AI, Fe, Cu, Zh and Pb) and phosphorus over the
53	6/9	whole Mediterranean from a one-year monitoring experiment: Biogeochemical
54	680	implications. Mar. Chem. 120, 164–178. doi:10.1016/j.marchem.2009.02.004
55	601	Quiau C. Zhang I. Thomas A.I. Martin I.M. Drug Catter I.C. 1002 Similian
эю 57	001 602	of atmospheric fellout on the upper layer water characteristic of the north water in the upper layer water at the north water in the upper layer water at the north water in the upper layer water at the north water in the upper layer water at the north water in the upper layer water at the north water in the upper layer water at the north water in the upper layer water at the north water in the upper layer water at the north water at the north water in the upper layer water at the north water at the north water in the upper layer water at the north water at the north water in the upper layer water at the north water at the north water in the upper layer water at the north water at the nort
58	002 602	Moditerron on L Atmos Cham 17, 45, 60
59	003	weutenanean. J. Atmos. Chem. 17, 43–00.
60		
61 62		
0⊿ 63		
64		26

	684	Heimbürger, L.E., Migon, C., Dufour, A., Chiffoleau, J.F., Cossa, D., 2010. Trace metal
1	685	concentrations in the North-western Mediterranean atmospheric aerosol between
2	686	1986 and 2008; Seasonal patterns and decadal trends. Sci. Total Environ, 408.
3	687	2629–2638 doi:10.1016/i scitoteny 2010.02.042
4	007	202) 2050. doi:10.1010/j.senotenv.2010.02.042
5 6	688	Instituto Geologico Minero de España (IGME), 1986, Mana del Karst de España
7	000	instituto Ocologico Ininelo de España (101/12), 1900. Inapa del Raist de España.
8	689	Jeandel, C., Oelkers, E.H., 2015. The influence of terrigenous particulate material
9	690	dissolution on ocean chemistry and global element cycles. Chem. Geol. 395, 50–
11 11	691	66. doi:10.1016/i.chemgeo.2014.12.001
12	071	001 d011011010, j.enenige0.201 112.001
13	692	Jeandel C. Peucker-Ehrenbrink B. Jones M.T. Pearce C.R. Oelkers F.H.
14	692	Godderis V Lacan E Aumont O Arsouze T 2011 Ocean margins: The
15	604	missing term in occashic element hudgets? Eq. (Weshington, DC), 02, 217, 224
16	094	missing term in oceanic element budgets? Eos (washington, DC). 92, $217-224$.
17	695	doi:10.1029/2011EO260001
⊥o 19	(0)	
20	696	Jickells, T., 1995. Atmospheric inputs of metals and nutrients to the oceans: their
21	697	magnitude and effects. Mar. Chem. 48, 199–214. doi:10.1016/0304-
22	698	4203(95)92784-P
23		
24	699	Johannes, R., 1980. The Ecological Significance of the Submarine Discharge of
25 26	700	Groundwater . Mar. Ecol. Prog. Ser. 3, 365–373. doi:10.3354/meps003365
20 27		
28	701	Jordi, A., Basterretxea, G., Tovar-Sánchez, A., Alastuev, A., Ouerol, X., 2012, Copper
29	702	aerosols inhibit phytoplankton growth in the Mediterranean Sea Proc. Natl. Acad
30	702	Sci II S A 109 21246-9 doi:10.1073/pnas.1207567110
31	/05	Sei. 0. S. M. 109, 21240 9. doi:10.1075/phas.1207507110
32	704	Knee K Paytan & 2011 Submarine Groundwater Discharge: A Source of Nutrients
33 21	704	Matels and Pollutants to the Coastal Ocean Trastice Estuar Coast Sci 4, 205
34 35	705	Metals, and Pollutants to the Coastal Ocean. Theatise Estual. Coast. Sci. 4, $203-224$, $4+10$ 1016/D078 0 12 274711 2 00410 1
36	/06	234. doi:10.1016/B978-0-12-374711-2.00410-1
37	707	
38	/0/	Kwon, E., Kim, G., Primeau, F., Moore, W., Cho, HM., Devries, T., Sarmiento, J.,
39	708	Charette, M., Cho, YK., 2014. Global Estimate of Submarine Groundwater
40	709	Discharge Based on an Observationally Constrained Radium Isotope Model.
4⊥ 42	710	Geophys. Res. Lett. 41, 8438–8444. doi:10.1002/2014GL061574.Received
43		
44	711	Lafabrie, C., Garrido, M., Leboulanger, C., Cecchi, P., Grégori, G., Pasqualini, V.,
45	712	Pringault, O., 2013. Impact of contaminated-sediment resuspension on
46	713	phytoplankton in the Biguglia lagoon (Corsica, Mediterranean Sea). Estuar. Coast.
47	714	Shelf Sci. 130, 70–80. doi:10.1016/j.ecss.2013.06.025
48		ý
49 50	715	Ludwig W Dumont E Meybeck M Heussner S 2009 River discharges of water
51	716	and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem
52	717	changes during past and future decades? Prog. Oceanogr. 80, 100, 217
53	710	doi:10.1016/i moscom 2000.02.001
54	/10	doi:10.1010/J.pocean.2009.02.001
55	710	Marine D. Camie Camie F. Divaldi C. Gri A. 2014 Di ana ini ana ang
56 57	/19	Macias, D., Garcia-Gorriz, E., Piroddi, C., Stips, A., 2014. Biogeochemical control of
57 58	720	marine productivity in the Mediterranean Sea during the last 50 years. Global
59	721	Biogeochem. Cycles 28, 897–907. doi:doi:10.1002/2014GB004846
60		
61		
62		
63		2.7
64		1,

Mackey, K.R.M., Buck, K.N., Casey, J.R., Cid, A., Lomas, M.W., Sohrin, Y., Paytan, A., 2012. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea. Front. Microbiol. 3, 1-15. doi:10.3389/fmicb.2012.00359 Mahowald, N.M., Baker, A.R., Bergametti, G., Brooks, N., Duce, R. a., Jickells, T.D., Kubilay, N., Prospero, J.M., Tegen, I., 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles 19, 1–15. doi:10.1029/2004GB002402 Martin, J.-M., Whitfield, M., 1983. The Significance of the River Input of Chemical Elements to the Ocean, in: Wong, C.S., Boyle, E., Bruland, K.W., Burton, J.D., Goldberg, E.D. (Eds.), Trace Metals in Sea Water. Springer US, Boston, MA, pp. 265-296. doi:10.1007/978-1-4757-6864-0 16 Mcallister, S.M., Barnett, J.M., Heiss, J.W., Findlay, A.J., Macdonald, D.J., Dow, C.L., Luther, G.W., Michael, H. a, Chan, C.S., 2015. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnol. Oceanogr. 60, 329-345. doi:10.1111/lno.10029 Mejías, M., Ballesteros, B.J., Antón-Pacheco, C., Domínguez, J. a., Garcia-Orellana, J., Garcia-Solsona, E., Masqué, P., 2012. Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. J. Hydrol. 464-465, 27-40. doi:10.1016/j.jhydrol.2012.06.020 Migon, C., Journel, B., Nicolas, E., 1997. Measurement of trace metal wet, dry and total atmospheric fluxes over the Ligurian Sea. Atmos. Environ. 31, 889-896. doi:10.1016/S1352-2310(96)00242-7 Migon, C., Morelli, J., Nicolas, E., Copin-Montegut, G., 1991. Evaluation of total atmospheric deposition of Pb, Cd, Cu and Zn to the Ligurian Sea. Sci. Total Environ. 105, 135-148. doi:10.1016/0048-9697(91)90336-D Moore, W.S., 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66, 75–93. doi:10.1023/B:BIOG.0000006065.77764.a0 Moore, W.S., 1999. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 65, 111-125. doi:10.1016/S0304-4203(99)00014-6 Morel, F.M.M., Price, N.M., 2003. The biogeochemical cycles of trace metals in the oceans. Science 300, 944-947. doi:10.1126/science.1083545 O'Connor, A.E., Luek, J.L., McIntosh, H., Beck, A.J., 2015. Geochemistry of redox-sensitive trace elements in a shallow subterranean estuary. Mar. Chem. 172, 70-81. doi:10.1016/j.marchem.2015.03.001

	759	Obata, H., Van den Berg, C.M.G., 2001. Determination of picomolar levels of iron in
1	760	seawater using catalytic cathodic stripping voltammetry. Anal. Chem. 73, 2522–
2	761	2528. doi:10.1021/ac001495d
3		
4	762	Oelkers, E.H., Gislason, S.R., Eiriksdottir, E.S., Jones, M., Pearce, C.R., Jeandel, C.
5	763	2011 The role of riverine particulate material on the global cycles of the elements
7	764	Appl. Geochemistry 26, \$365, \$360, doi:10.1016/j.apgeochem.2011.03.062
8	704	App1. Geochemistry 20, 3505–5509. doi:10.1010/j.apgeochem.2011.05.002
9	765	Olliviar D. Clauda C. Dadakovitah O. Hamalin D. 2008 TIMS managuraments of
10	705	22(De and 229De in the Culf of Lion, on attempt to quantify submarine
11	700	220Ka and 226Ka in the Gun of Lion, an altempt to quantify submarine $1 - 4 - 1$
12	/6/	groundwater discharge. Mar. Chem. 109, 337–354.
14	768	doi:10.1016/j.marchem.2007.08.006
15	= (0	
16	769	Ollivier, P., Radakovitch, O., Hamelin, B., 2011. Major and trace element partition and
17	770	fluxes in the Rhône River. Chem. Geol. 285, 15–31.
18 10	771	doi:10.1016/j.chemgeo.2011.02.011
20		
21	772	Palanques, A., Drake, D.E., 1990. Distribution and dispersal of suspended particulate
22	773	matter on the Ebro continental shelf, northwestern Mediterranean Sea. Mar. Geol.
23	774	95, 193–206. doi:10.1016/0025-3227(90)90116-2
24		
25	775	Ridame, C., Guieu, C., Loÿe-Pilot, MD., 1999. Trend in total atmospheric deposition
20 27	776	fluxes of aluminium, iron, and trace metals in the northwestern Mediterranean over
2.8	777	the past decade (1985-1997). J. Geophys. Res. Atmos. 104, 30127–30138.
29	778	doi:10.1029/1999ID900747
30	110	
31	779	Rodellas V. Garcia-Orellana I. Garcia-Solsona F. Masqué P. Domínguez I.A
32	780	Robertas, V., Oureia Orenand, S., Gareia Solsona, E., Masque, T., Donniguez, S.A., Ballesteros B.I. Maijas M. Zarroca M. 2012 Quantifying groundwater
33	700	discharge from different courses into a Mediterron con wetland by using 2020 and
34 35	/01	discharge from different sources into a Mediterranean wettand by using 222Ki and
36	/82	Ra isotopes. J. Hydrol. 466-467, 11–22. doi:10.1016/j.jnydrol.2012.07.005
37		
38	783	Rodellas, V., Garcia-Orellana, J., Masqué, P., Feldman, M., Weinstein, Y., 2015a.
39	784	Submarine groundwater discharge as a major source of nutrients to the
40	785	Mediterranean Sea. Proc. Natl. Acad. Sci. U. S. A. 112, 3926–30.
4⊥ 4⊃	786	doi:10.1073/pnas.1419049112
42 43		
44	787	Rodellas, V., Garcia-Orellana, J., Masqué, P., Font-Muñoz, J.S., 2015b. The influence
45	788	of sediment sources on radium-derived estimates of Submarine Groundwater
46	789	Discharge, Mar. Chem. 171, 107–117, doi:10.1016/i.marchem.2015.02.010
47		
48	790	Rodellas V. Garcia-Orellana I. Toyar-Sánchez A. Basterretxea G. Lónez-Garcia
49	701	IM Sénchoz Quiles D. Caroia Solsona F. Masqué P. 2014 Submarina
50 51	791	J.M., Sanchez-Quiles, D., Garcia-Solsona, E., Masque, F., 2014. Submarine
52	792	groundwater discharge as a source of nutrients and trace metals in a Mediterranean
53	/93	bay (Palma Beach, Balearic Islands). Mar. Chem. 160, 56–66.
54	794	doi:10.1016/j.marchem.2014.01.007
55		
56	795	Roux, L.L., Le Roux, S.L., Appriou, P., 1998. Behaviour and speciation of metallic
57	796	species Cu, Cd, Mn and Fe during estuarine mixing. Mar. Pollut. Bull. 36, 56–64.
58	797	doi:10.1016/S0025-326X(98)90033-9
59 60		
61		
62		
63		20
64		29
65		
1	798 799	Sandroni, V., Migon, C., 2002. Atmospheric deposition of metallic pollutants over the Ligurian Sea: Labile and residual inputs. Chemosphere 47, 753–764.
----------	------------	--
2 3	800	doi:10.1016/S0045-6535(01)00337-X
4 5	801	Santos, I.R., Cook, P.L.M., Rogers, L., de Weys, J., Eyre, B.D., 2012. The "salt wedge
6	802	pump": Convection-driven pore-water exchange as a source of dissolved organic
7	803	and inorganic carbon and nitrogen to an estuary. Limnol. Oceanogr. 57, 1415–
8 9	804	1426. doi:10.4319/lo.2012.57.5.1415
10	805	Santos Echaandía I. 2011. Direct simultaneous determination of Co. Cu. Ec. Ni and y
11	005	in nore waters by means of adacentive asthedia stringing voltemmetry with mixed
⊥∠ 13	000	lin pore waters by means of adsorptive cathodic surpping voltammetry with mixed
14	807	ngands. Talanta 85, 506–512. doi:10.1016/j.talanta.2011.04.055
15 16	808	Santos-Echeandia, J., Prego, R., Cobelo-García, a., Millward, G.E., 2009. Porewater
17	809	geochemistry in a Galician Ria (NW Iberian Peninsula): Implications for benthic
18	810	fluxes of dissolved trace elements (Co, Cu, Ni, Pb, V, Zn). Mar. Chem. 117, 77-
19 20	811	87. doi:10.1016/j.marchem.2009.05.001
21 22	812	Shaw, T.J., Gieskes, J.M., Jahnke, R.A., 1990. Early diagenesis in differing depositional
23	813	environments: The response of transition metals in pore water. Geochim.
24	814	Cosmochim. Acta 54, 1233–1246. doi:10.1016/0016-7037(90)90149-F
25		
26 27	815	Stieglitz, T.C., van Beek, P., Souhaut, M., Cook, P.G., 2013. Karstic groundwater
28	816	discharge and seawater recirculation through sediments in shallow coastal
29	817	Mediterranean lagoons, determined from water, salt and radon budgets. Mar.
30	818	Chem. 156, 73–84. doi:10.1016/j.marchem.2013.05.005
31		,
32 33	819	Sunda, W.G., 2012. Feedback interactions between trace metal nutrients and
34	820	phytoplankton in the ocean. Front. Microbiol. 3, 1–22.
35	821	doi:10.3389/fmicb.2012.00204
36		
38	822	Tovar-Sánchez, A., 2012. Sampling approches for trace element determination in
39	823	seawater, in: Pawliszyn, J., Bayona, J.M. (Eds.), Comprehensive Sampling and
40	824	Sample Preparation. Academic Press: Oxford, UK, pp. 317–334.
41	825	doi:10.1016/B978-0-12-381373-2.10017-1
42 43		
44	826	Tovar-Sánchez, A., Arrieta, J.M., Duarte, C.M., Sañudo-Wilhelmy, S.A., 2014a. Spatial
45	827	gradients in trace metal concentrations in the surface microlayer of the
46	828	Mediterranean Sea. Front. Mar. Sci. 1, 1–8. doi:10.3389/fmars.2014.00079
47 10		
49	829	Tovar-Sánchez, A., Basterretxea, G., Ben Omar, M., Jordi, A., Sánchez-Quiles, D.,
50	830	Makhani, M., Mouna, D., Muya, C., Anglès, S., 2016. Nutrients, trace metals and
51	831	B-vitamin composition of the Moulouya River: a major North African river
52	832	discharging into the Mediterranean Sea. Estuar. Coast. Shelf Sci. 176, 47-57.
53 54	833	doi:10.1016/j.ecss.2016.04.006
55		
56	834	Tovar-Sánchez, A., Basterretxea, G., Rodellas, V., Sánchez-Quiles, D., Garcia-Orellana,
57	835	J., Masqué, P., Jordi, A., López, J.M., Garcia-Solsona, E., 2014b. Contribution of
58 59	836	Groundwater Discharge to the Coastal Dissolved Nutrients and Trace Metal
60		
61		
62		
03 64		30
65		

1	837 838	Concentrations in Majorca Island: Karstic vs Detrital Systems. Environ. Sci. Technol. 48, 11819–11827. doi:dx.doi.org/10.1021/es502958t
3 4 5 6 7 8	839 840 841 842	Trezzi, G., Garcia-Orellana, J., Santos-Echeandia, J., Rodellas, V., Garcia-Solsona, E., Garcia-Fernandez, G., Masqué, P., 2016. The influence of a metal-enriched mining waste deposit on submarine groundwater discharge to the coastal sea. Mar. Chem. 178, 35–45. doi:10.1016/j.marchem.2015.12.004
9 10 11 12 13	843 844 845	Twining, B.S., Baines, S.B., 2013. The trace metal composition of marine phytoplankton. Ann. Rev. Mar. Sci. 5, 191–215. doi:10.1146/annurev-marine-121211-172322
14 15 16	846 847	UNEP/MAP/MED POL, 2003. Riverine transport of water, sediments and pollutants to the Mediterranean Sea. MAP Tech. Reports Ser. Nº141.
18 19 20 21 22	848 849 850 851	Windom, H.L., Moore, W.S., Niencheski, L.F.H., Jahnke, R. a., 2006. Submarine groundwater discharge: A large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar. Chem. 102, 252–266. doi:10.1016/j.marchem.2006.06.016
23 24 25 26 27 28	852 853 854	Yoon, Y.Y., Martin, J.M., Cotté, M.H., 1999. Dissolved trace metals in the Western Mediterranean Sea: Total concentration and fraction isolated by C18 Sep-Pak technique. Mar. Chem. 66, 129–148. doi:10.1016/S0304-4203(99)00033-X
29 30 31 32 33	855 856 857 858	Zarroca, M., Linares, R., Rodellas, V., Garcia-Orellana, J., Roqué, C., Bach, J., Masqué, P., 2014. Delineating coastal groundwater discharge processes in a wetland area by means of electrical resistivity imaging, 224Ra and 222Rn. Hydrol. Process. 28, 2382–2395. doi:10.1002/hyp.9793
34 35 36	859	
37 38 39	860	
40 41 42 43 44 45 46 47 49 51 23 45 55 57 59 61 2	861	
63 64 65		31

HIGHLIGHTS:

- Regional SGD-driven dissolved metal fluxes are estimated for the NW Mediterranean;
- SGD, riverine and atmospheric inputs of dissolved metals are compared
- SGD is a major source of dissolved metals to the coastal NW Mediterranean
- SGD is particularly significant where rivers are scarce (African coast and islands)

 Table(s) corrected

 Table 1: Dissolved trace metal concentrations in karstic and detrital SGD end-members used in this study.

Samples	Sampling time	Salinity	Dissolved metal concentrations (nmol L ⁻¹)							
			Cd	Со	Cu	Fe	Ni	Pb	Zn	
	Karstic SGD									
Garbí	Dec 2013	5.4	< 0.04	< 0.06	2.0	840	5.3	< 0.04	26	
Garbí	Jul 2014	4.6	0.49	< 0.06	n.a.	410	6.5	< 0.04	7.2	
Garbí	May 2015	5.0	0.04	< 0.06	0.68	35	7.2	0.13	21	
Suís	Nov 2013	4.1	< 0.04	0.52	3.1	260	6.2	0.42	48	
Badum	Nov 2013	9.7	< 0.04	0.34	1.5	520	2.7	0.22	42	
Font Dins	Nov 2013	0.3	0.21	0.54	4.2	550	1.8	0.13	72	
Font Centre	Nov 2013	5.3	0.29	0.45	2.5	100	1.6	< 0.04	35	
Font South	Nov 2013	4.1	0.15	0.55	2.2	360	2.5	1.1	99	
Estramar	Jun 2015	4.6	0.15	0.16	3.0	18	5.9	1.2	45	
La Palme	Jun 2015	6.8	0.13	0.17	4.9	130	10	2.0	70	
Sa Nau (Tovar-Sanchez et al. 2014) $^+$	Nov 2010	3.2	3.1	4.0	7.2	730	32	0.16	300	
Baixamar (Tovar-Sánchez, personal communication) ⁺	Jun 2010/Jun2011	n.a.	n.a.	3.9	24	570	43	2.1	38	
Karstic SGD Median			0.15	0.40	3.0	390	6.1	0.19	44	
Karstic SGD (1 st -3 rd quartiles)			0.04 - 0.25	0.14 - 0.54	2.1 - 4.6	130 - 550	2.7 - 7.9	0.11 - 1.1	33 - 71	
	Detrital SGD									
Argentona	Dec 2013	5.6	0.16	2.0	7.5	160	5.5	0.65	130	
Argentona	Dec 2013	8.0	1.0	2.6	26	260	16	n.a.	350	
Peníscola	Nov 2013	5.7	< 0.04	0.51	1.7	240	4.5	0.50	21	
Fosca North	May 2015	35.4	0.08	0.10	13	240	11	0.15	13	
Fosca South	May 2015	34.7	0.12	0.54	11	120	14	0.19	18	

Empuriabrava	May 2015	36.0	0.08	0.32	16	190	11	0.19	24
Arenys	May 2015	0.2	< 0.04	1.9	120	430	8.8	0.25	27
Sitges	Jun 2015	7.5	0.06	1.0	160	110	83	0.96	34
Palma Bay (Rodellas et al. 2014) ⁺	May 2010	2.1-31.0*	n.a.	n.a.	30	320	38	0.69	73
Santanyí (Tovar-Sanchez et al. 2014) ⁺	Nov 2010	10.9-33.7*	0.73	1.64	59	44	32	0.62	1900
Romàntica (Tovar-Sanchez et al. 2014) ⁺	Nov 2010	17.8-32.4*	0.44	6.9	23	420	50	0.19	170
El Gorguel (Trezzi et al., 2016) ⁺	Jul 2013	10.8-30.7*	14	n.a.	29	460	35	7.4	2100
Detrital SGD Median			0.12	1.5	25	240	15	0.50	54
Detrital SGD (1 st -3 rd quartiles)			0.07 - 0.59	0.52 - 2.0	13 - 37	150 - 350	10 - 36	0.19 - 0.67	23 - 220
	Total SGD								
SGD Median			0.14	0.53	7.5	260	9.4	0.25	85
SGD (1 st -3 rd quartiles)			0.05 - 0.40	0.21 - 1.8	2.8 - 25	130 - 440	5.5 - 32	0.16 - 0.82	16 - 120

⁺ Metal concentrations reported are average concentrations of several groundwater samples or concentrations of SGD end-members selected in the respective studies for the calculation of the local SGD fluxes

* Range of salinities of groundwater samples considered in each local study to obtain the SGD end-members

n.a.= not available

		Cd	Со	Cu	Fe	Ni	Pb	Zn
SGD	Median	0.003	0.02	0.36	7.7	0.27	0.009	1.2
	1 st - 3 rd quartiles	0.0007 -0 .03	0.004 - 0.11	0.09 – 1.9	1.8 - 29	0.09 - 1.9	0.002 - 0.06	0.38 – 1.2
Rivers	Median	0.02		2.2		1.7	0.03	1.4
	1 st - 3 rd quartiles	0.02 - 0.03		1.9 – 2.4		1.5 – 1.7	0.01 - 0.03	1.1 – 1.4
	Mean		0.08		15			
	σ		0.005		2.4			
Atmosphere	Median	0.14		2.7	250	1.9	1.2	82
	1 st - 3 rd quartiles	0.07 - 0.44		2.2 - 3.5	91 - 280	1.1 – 2.5	1.1 – 1.6	15 - 110
	Mean		0.28					
	σ		0.24					
Total		0.09 - 0.51	0.12 - 0.71	4.2 - 7.7	110 - 330	2.7 – 6.1	1.1 – 1.6	16 - 120

Table 2: SGD-driven, riverine and atmospheric dTM fluxes to the NW Mediterranean Sea.

Dissolved metal fluxes (10⁶ mol y⁻¹)

2	The study area in the Mediterranean basin (180,000 km ² ; delimited in blue) and the
3	localization of SGD end-members, for which dTM concentrations were reported in this
4	study (yellow triangles) or in previous studies (green diamonds). The main rivers of the
5	study area (red circles), analysed in other studies for dTM concentrations, are also
6	plotted on the map
7	
8	Figure 2
9	Comparison of dTM concentrations in SGD from karstic (orange) and detrital (grey)
10	systems. Ranges between the 1 st and the 3 rd quartiles and median values of the available
11	dataset are plotted.
12	
13	Figure 3
14	Comparison of JTM concentrations in CCD (light hlas) and in since (white) of the NW
	Comparison of d I M concentrations in SGD (light blue) and in rivers (white) of the N w
15	Mediterranean Sea. Ranges between the 1 st and the 3 rd quartiles and median values of
15 16	Mediterranean Sea. Ranges between the 1 st and the 3 rd quartiles and median values of the available dataset are plotted for SGD. For the rivers, data are taken from other
15 16 17	Mediterranean Sea. Ranges between the 1 st and the 3 rd quartiles and median values of the available dataset are plotted for SGD. For the rivers, data are taken from other studies (Elbaz-Poulichet et al., 1996, 1989; Guieu et al., 1997, 1993; Ollivier et al.,
15 16 17 18	 Comparison of dTM concentrations in SGD (light blue) and in rivers (white) of the NW Mediterranean Sea. Ranges between the 1st and the 3rd quartiles and median values of the available dataset are plotted for SGD. For the rivers, data are taken from other studies (Elbaz-Poulichet et al., 1996, 1989; Guieu et al., 1997, 1993; Ollivier et al., 2011; UNEP/MAP/MED POL, 2003); median values and ranges between the 1st and the
15 16 17 18 19	 Comparison of dTM concentrations in SGD (light blue) and in rivers (white) of the NW Mediterranean Sea. Ranges between the 1st and the 3rd quartiles and median values of the available dataset are plotted for SGD. For the rivers, data are taken from other studies (Elbaz-Poulichet et al., 1996, 1989; Guieu et al., 1997, 1993; Ollivier et al., 2011; UNEP/MAP/MED POL, 2003); median values and ranges between the 1st and the 3rd quartiles are plotted for Zn, Cu, Ni, Pb and Cd, while for Fe and Co mean values and
15 16 17 18 19 20	Comparison of dTM concentrations in SGD (light blue) and in rivers (white) of the NW Mediterranean Sea. Ranges between the 1 st and the 3 rd quartiles and median values of the available dataset are plotted for SGD. For the rivers, data are taken from other studies (Elbaz-Poulichet et al., 1996, 1989; Guieu et al., 1997, 1993; Ollivier et al., 2011; UNEP/MAP/MED POL, 2003); median values and ranges between the 1 st and the 3 rd quartiles are plotted for Zn, Cu, Ni, Pb and Cd, while for Fe and Co mean values and relative standard deviations are plotted. Dashed lines represent dTM concentrations of
15 16 17 18 19 20 21	Comparison of dTM concentrations in SGD (light blue) and in rivers (white) of the NW Mediterranean Sea. Ranges between the 1 st and the 3 rd quartiles and median values of the available dataset are plotted for SGD. For the rivers, data are taken from other studies (Elbaz-Poulichet et al., 1996, 1989; Guieu et al., 1997, 1993; Ollivier et al., 2011; UNEP/MAP/MED POL, 2003); median values and ranges between the 1 st and the 3 rd quartiles are plotted for Zn, Cu, Ni, Pb and Cd, while for Fe and Co mean values and relative standard deviations are plotted. Dashed lines represent dTM concentrations of the open Western Mediterranean Sea reported in the literature (Tovar-Sanchez et al.,
15 16 17 18 19 20 21 22	Comparison of dTM concentrations in SGD (light blue) and in rivers (white) of the NW Mediterranean Sea. Ranges between the 1 st and the 3 rd quartiles and median values of the available dataset are plotted for SGD. For the rivers, data are taken from other studies (Elbaz-Poulichet et al., 1996, 1989; Guieu et al., 1997, 1993; Ollivier et al., 2011; UNEP/MAP/MED POL, 2003); median values and ranges between the 1 st and the 3 rd quartiles are plotted for Zn, Cu, Ni, Pb and Cd, while for Fe and Co mean values and relative standard deviations are plotted. Dashed lines represent dTM concentrations of the open Western Mediterranean Sea reported in the literature (Tovar-Sanchez et al., 2014; Yoon et al., 1999).

25	Comparison of SGD-driven (light blue), riverine (white) and atmospheric (red) dTM
26	fluxes to the NW Mediterranean Sea. Dissolved metal fluxes through SGD, rivers and
27	atmospheric deposition were calculated as explained in Section 2.4. Median values and
28	ranges between the 1 st and the 3 rd quartiles are reported for all the dTM fluxes, with the
29	exception of riverine fluxes of Fe and Co and atmospheric fluxes of Co, for which mean
30	values and relative standard deviations are plotted.
31	
32	Figure 5
33	Model of the spatial influence of the main continental sources of dTM to the NW

- 34 Mediterranean Sea. Note that SGD (light blue) and rivers (dark blue) influence areas are
- 35 not drawn to scale.
- 36

38 Comparison of the area-weighted SGD-driven (light blue) and the atmospheric (red)

39 dTM fluxes to the NW Mediterranean Sea. Area-weighted SGD-driven dTM fluxes

40 were calculated considering a distance offshore of 3 km as upper limit affected by SGD

41 (see Section 3.3).

42

Figure 4 black and white

Appendix A: Karstic and detrital SGD flows reported in the literature for local studies in the NW 1

2 Mediterranean Sea.

		Shore-lenght	Water flow [*]
Karstic SGD		km	$(10^6 \text{ m}^3 \text{ y}^{-1} \text{ km}^{-1})$
Garcia-Solsona et al., 2010a, in Rodellas et al., 2015a	Alcafar	0.4	0.24
Garcia-Solsona et al., 2010b, in Rodellas et al., 2015a	Badum	2.5	19
Mejías et al., 2012, in Rodellas et al., 2015a	Maestrat	45	8.3
Rodellas et al., 2015b	Port of Maó	18	2.4
Rodellas et al., unpublished	Alfacs	5	13
Stieglitz et al., 2013, in Rodellas et al., 2015a	La palme	6	7.9
Tovar-Sánchez et al., 2014, in Rodellas et al., 2015a	Sa Nau	0.08	21
	Median		8.3
	1 st -3 rd quartiles		5.2 - 16
Detrital SGD			
Baudron et al., 2015	Mar Menor	22	25
Ollivier et al., 2008, in Rodellas et al., 2015a	Gulf of Lyon	300	29
Rodellas et al., 2012, in Rodellas et al., 2015a	Peníscola	3	6.3
Rodellas et al., 2014, in Rodellas et al., 2015a	Palma Bay	4.4	4.6
Tovar-Sánchez et al., 2014, in Rodellas et al., 2015a	Romàntica	0.15	0.40
Tovar-Sánchez et al., 2014, in Rodellas et al., 2015a	Santanyí	0.07	1.4
Trezzi et al. 2016	El Gorguel	0.7	20
	Median		6.3
	1 st -3 rd quartiles		3.0 - 23

3 * SGD flows are normalized to the shore length of each study area (when reported flows were not shore-normalized, SGD flows were divided by the shore length or the bay mouth width).

4 5 6

Appendix B. Data on dissolved metal concentrations in the Rhone and the Ebro Rivers reported in the

7 8 9 literature

			Dissolved metal concentrations (nmol L ⁻¹)						
		Cd	Со	Cu	Fe	Ni	Pb	Zn	
Elbaz-Poulichet et al. (1989)	Rhone	0.48	1.2	32	n.a.	23	0.50	21	
Elbaz-Poulichet et al. (1996)	Rhone	0.27	n.a.	35	n.a.	27	0.42	n.a.	
Guieu et al., (1991)	Ebro	0.4	n.a.	30	n.a.	24	0.15	Zn 21 n.a. n.a. 20 18 41 17 20 n.a. 8.4 9.2 n.a. 19 0.42 15 - 20	
Guieu et al., (1993)	Rhone	0.25	1.1	33	232	24	0.40	20	
Guieu et al. (1997)	Rhone + Ebro	0.27	1.1	35	184	25	0.38	18	
Ollivier et al. (2011)	Rhone	n.a.	n.a.	33	n.a.	17	0.33	41	
UNEP (2003) and references	s Rhone	0.25	n.a.	0.31	n.a.	15	0.22	17	
within	Rhone	0.44	n.a.	30	n.a.	24	0.40	20	
	Rhone	n.a.	n.a.	35	n.a.	n.a.	0.43	n.a.	
	Ebro	0.13	n.a.	20	n.a.	21	0.12	8.4	
	Ebro	0.54	n.a.	28	n.a.	26	0.14	9.2	
	Ebro	n.a.	n.a.	15	n.a.	20	0.75	n.a.	
	Median	0.27		31		24	0.39	19	
	1 st -3 rd quartiles	0.25 - 0.44		26 - 33		21 - 25	0.20 - 0.42	15 - 20	
	Mean		1.1		210				
	σ		0.07		34				

10 n.a. = not available;

		Cd	Со	Cu	Fe	Ni	Pb	Zn
Guieu et al., 1997		69	42	31 - 48	4 - 17	44 - 52	30-59	35 - 75
			Atı	nospheric d	issolved metal	fluxes (mol l	$(m^{-2} y^{-1})$	
		Cd	Со	Cu	Fe	Ni	Pb	Zn
Bonnet and Guieu (2006)*	NW Med	n.a.	n.a.	n.a.	2100	n.a.	n.a.	n.a.
Chester et al., (1999)	NW Med	n.a.	0.41	23	n.a.	4.6	8.6	n.a.
Guerzoni et al. (1999)	C Med	1.7	n.a.	59	140	21	15	340
Guieu et al. (1993)*	NW Med	8.0	3.0	12	1600	11	8.6	840
Guieu et al. (1997)	NW Med	4.9	1.3	17	1500	7.7	6.8	580
Guieu et al. (2010)*	Med	0.23	n.a.	n.a.	1300	n.a.	3.1	84
Migon et al. (1991)*	NW Med	1.0	n.a.	12	n.a.	n.a.	23	76
Migon et al. (1997)*	NW Med	0.40	n.a.	14	n.a.	11	6.7	680
Ridame et al. (1999)*	NW Med	0.34	n.a.	6.5	260	3.3	1.9	43
Sandroni and Migon (2002)	NW Med	0.52	n.a.	18	n.a.	16	5.8	600
	Median	0.78		15	1400	11	6.8	460
	1 st -3 rd quartiles	0.39 – 2.4		12 - 19	510 - 1600	6.1 - 14	5.8-8.6	82 - 620
	Mean		1.6					
	σ		1.3					

Appendix C. Data on atmospheric dissolved metal fluxes to the Mediterranean Sea reported in the literature.

Dissolved fraction of the total atmospheric deposition (%)

* Data of dissolved metal fluxes were not reported; they have been calculated for this study from mean fluxes of the total fraction of metals, by using the percentages of partitioning between dissolved and particulate fractions reported in Guieu et al., (1997). For metals characterized by a range of percentages of dissolved fraction, the mean values of the dissolved metal fluxes, calculated considering minimum and maximum percentages of partitioning, are reported.

n.a. = not available;

NW Med = North Western Mediterranean; C Med = Central Mediterranean; Med = Mediterranean.