51 research outputs found
High-performance Schottky diodes endure high temperatures
Fabrication process and aluminum/GaAs (gallium arsenide) coupling are used to produce Schottky diodes that have high cutoff frequencies and can withstand operating temperatures in excess of 500 C
Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,γ) in the ESR Storage Ring
© 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio
Banff 2022 liver group meeting report: monitoring long term allograft health.
The Banff Working Group on Liver Allograft Pathology met in September 2022. Participantsincluded hepatologists, surgeons, pathologists, immunologists and histocompatibility specialists.Presentations and discussions focused on the evaluation of long-term allograft health, including noninvasive and tissue monitoring, immunosuppression optimisation and long-term structural changes.Potential revision of the rejection classification scheme to better accommodate and communicate lateT cell-mediated rejection patterns and related structural changes, such as nodular regenerativehyperplasia, were discussed. Improved stratification of long-term maintenance immunosuppression tomatch the heterogeneity of patient settings will be central to improving long-term patient survival.Such personalised therapeutics are in turn contingent on better understanding and monitoring ofallograft status within a rational decision-making approach, likely to be facilitated in implementationwith emerging decision support tools. Proposed revisions to rejection classification emerging fromthe meeting include incorporation of interface hepatitis and fibrosis staging. These will be opened toonline testing, modified accordingly and subject to consensus discussion leading up to the next Banffconference
Cytogenetic and Molecular Predictors of Outcome in Acute Lymphocytic Leukemia: Recent Developments
During the last decade a tremendous technologic progress based on genome-wide profiling of genetic aberrations, structural DNA alterations, and sequence variations has allowed a better understanding of the molecular basis of pediatric and adult B/T- acute lymphoblastic leukemia (ALL), contributing to a better recognition of the biological heterogeneity of ALL and to a more precise definition of risk factors. Importantly, these advances identified novel potential targets for therapeutic intervention. This review will be focused on the cytogenetic/molecular advances in pediatric and adult ALL based on recently published articles
Extensive Gene-Specific Translational Reprogramming in a Model of B Cell Differentiation and Abl-Dependent Transformation
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation
New test of modulated electron capture decay of hydrogen-like 142Pm ions: Precision measurement of purely exponential decay
An experiment addressing electron capture (EC) decay of hydrogen-like 142Pm60+ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times for about 9000 individual EC decays have been measured by applying the single-ion decay spectroscopy method. Both visually and automatically analysed data can be described by a single exponential decay with decay constants of 0.0126(7)s−1for automatic analysis and 0.0141(7)s−1for manual analysis. If a modulation superimposed on the exponential decay curve is assumed, the best fit gives a modulation amplitude of merely 0.019(15), which is compatible with zero and by 4.9 standard deviations smaller than in the original observation which had an amplitude of 0.23(4)
Reactivity of the N-terminal cysteine residues in active and inactive forms of FNR, and O<sub>2</sub>-responsive, Fe containing transcriptional regulator of Escherichia coli
FNR, the O2-responsive gene regulator of anaerobic respiratory genes in Escherichia coli, contains an N-terminal cluster of four cysteine residues (Cys16-X3-Cys20-X2-Cys23-X5-Cys29), three of which are thought to be involved in the binding of an iron cofactor. The accessibility of the cysteine residues for iodoacetate is known to increase upon switch from the active (anaerobic) to the inactive (aerobic or metal depleted) state. It was analyzed which residues become accessible under either condition. Up to four modified forms, FNR-I, FNR-II, FNR-III, and FNR-IV, containing approximately 1, 2, 3.5, and 5 carboxymethyl groups, were obtained either by reaction in vivo and in vitro under conditions of aerobiosis, anaerobiosis, or iron limitation. By N-terminal sequencing, the carboxymethylated cysteine residues were identified. The amount of label in each of the four cysteine residues increased rather uniformly and gradually from FNR-I to FNR-IV irrespective of the condition of labeling; only Cys16 was preferentially labeled to some extent. It is concluded that the four essential cysteine residues change their accessibility in a similar way in the switch from active to inactive (aerobic or metal depleted) FNR, without specific differences in their reaction or function. Potential modes of Fe-binding by the cysteine residues are discussed. In addition, a different type of interaction of Fe(II) with FNR is described. The interaction occurred also in FNR carboxymethylated at approximately three cysteine residues
Isolation of intact FNR protein (M<sub>r</sub> 30,000) of Escherichia coli
FNR, the activator of anaerobic respiratory genes of Escherichia coli, has previously only been isolated as a protein of Mr 29,000, which lacks nine N-terminal amino acid residues. The underlying proteolytic events have been studied with the aim of isolating intact FNR and determining whether cleavage is the result of a physiologically significant intracellular processing mechanism or proteolytic degradation during isolation. The FNR protein was present in aerobically and anaerobically grown bacteria as the intact protein (Mr 30,000). Proteolysis only occurred during and shortly after disruption of the bacteria. The production of FNR (Mr 29,000) must therefore be regarded as an isolation artefact. The proteolysis was caused by a protease which is located outside the cytoplasmic membrane or activated upon disruption of the membrane. Protease inhibitors directed against serine, cysteine or metalloproteases failed to prevent cleavage of FNR. In E. coli strain CAG627, proteolysis was greatly reduced making it possible to isolate FNR of Mr 30,000. The N-terminal sequence of FNR (Mr 30,000) was identical to that predicted from the fnr gene starting with the initiating methionine residue and including a four-cysteine cluster (16)Cys-X3-Cys-X2-Cys-X5-Cys(29)
An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK.
Colonna-Romano S, Arnold W, Schlüter A, Boistard P, Pühler A, Priefer UB. An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK. Mol Gen Genet. 1990;223(1):138-147.A 1.9 kb DNA region of Rhizobium leguminosarum biovar viciae strain VF39 capable of promoting microaerobic and symbiotic induction of the Rhizobium meliloti fixN gene was identified by heterologous complementation. Sequence analysis of this DNA region revealed the presence of two complete open reading frames, orf240 and orf114. The deduced amino acid sequence of orf240 showed significant homology to Escherichia coli Fnr and R. meliloti FixK. The major difference between ORF240 and FixK is the presence of 21 N-terminal amino acids in ORF240 that have no counterpart in FixK. A similar protein domain is also present in E. coli Fnr and is essential for the oxygen-regulated activity of this protein. Analysis of the nucleotide sequence upstream of orf240 revealed a motif similar to the NtrA-dependent promoter consensus sequence, as well as two DNA regions resembling the Fnr consensus binding sequence. A Tn5-generated mutant in orf240 lost the ability to induce the R. meliloti fixN-lacZ fusion. Interestingly, this mutant was still capable of nitrogen fixation but showed reduced nitrogenase activity
- …