153 research outputs found

    Controle da diversidade da população em algoritmos genéticos aplicados na predição de estruturas de proteínas

    Get PDF
    Genetic Algorithms (GAs), a successful approach for optimization problems, usually fail when employed in the standard configuration in the protein structure prediction problem, since the solution space is very large and the population converges before a reasonable percentage of the possible solutions is explored. Thus, this work investigates the effect of increasing the diversity of the population on this problem by using Hypermutation and Random Immigrants, two traditional population diversity control schemes, in the structure prediction of the proteins Crambin (PDB 1CRN), Met-Enkephalin (PDB 1PLW), and DNA-Ligand (PDB 1ENH). Results show a significant reduction of the minimal energy found, thanks to the diversity, but this does not necessarily means a higher similarity to the original structure.Keywords: evolutionary computing, genetic algorithms, hypermutation, random immigrants, protein structure prediction.Apesar de utilizados em diversos problemas de otimização, Algoritmos Genéticos (AGs) tradicionais apresentam dificuldades, quando aplicados ao problema de predição de estruturas terciárias de proteínas. Isto ocorre porque o espaço de soluções é muito grande, e a convergência da população geralmente se manifesta antes que uma porcentagem razoável das soluções seja explorada. Assim sendo, este trabalho investiga o efeito que técnicas de incremento da diversidade da população em Algoritmos Genéticos tem sobre esta aplicação. Algoritmos Genéticos com Hipermutação e Imigrantes Aleatórios, técnicas tradicionais para o controle da diversidade da população, são comparados de acordo com seus resultados na determinação de estruturas das proteínas Crambina (PDB 1CRN), Met-Encefalina (PDB 1PLW) e DNA - Ligante (PDB 1ENH). Os resultados mostram uma significativa redução da energia mínima encontrada, graças ao aumento da diversidade da população, mas que não se reflete, necessariamente, em uma estrutura próxima da estrutura nativa.Palavras-chave: computação evolutiva, algoritmos genéticos, hipermutação, imigrantes aleatórios, predição de estruturas de proteínas

    Harnessing publicly available genetic data to prioritize lipid modifying therapeutic targets for prevention of coronary heart disease based on dysglycemic risk

    Get PDF
    Therapeutic interventions that lower LDL-cholesterol effectively reduce the risk of coronary artery disease (CAD). However, statins, the most widely prescribed LDL-cholesterol lowering drugs, increase diabetes risk. We used genome-wide association study (GWAS) data in the public domain to investigate the relationship of LDL-C and diabetes and identify loci encoding potential drug targets for LDL-cholesterol modification without causing dysglycemia. We obtained summary-level GWAS data for LDL-C from GLGC, glycemic traits from MAGIC, diabetes from DIAGRAM and CAD from CARDIoGRAMplusC4D consortia. Mendelian randomization analyses identified a one standard deviation (SD) increase in LDL-C caused an increased risk of CAD (odds ratio [OR] 1.63 (95 % confidence interval [CI] 1.55, 1.71), which was not influenced by removing SNPs associated with diabetes. LDL-C/CAD-associated SNPs showed consistent effect directions (binomial P = 6.85 × 10−5). Conversely, a 1-SD increase in LDL-C was causally protective of diabetes (OR 0.86; 95 % CI 0.81, 0.91), however LDL-cholesterol/diabetes-associated SNPs did not show consistent effect directions (binomial P = 0.15). HMGCR, our positive control, associated with LDL-C, CAD and a glycemic composite (derived from GWAS meta-analysis of four glycemic traits and diabetes). In contrast, PCSK9, APOB, LPA, CETP, PLG, NPC1L1 and ALDH2 were identified as “druggable” loci that alter LDL-C and risk of CAD without displaying associations with dysglycemia. In conclusion, LDL-C increases the risk of CAD and the relationship is independent of any association of LDL-C with diabetes. Loci that encode targets of emerging LDL-C lowering drugs do not associate with dysglycemia, and this provides provisional evidence that new LDL-C lowering drugs (such as PCSK9 inhibitors) may not influence risk of diabetes

    Структурно-семантичний аналіз еврісемантів української мови (на матеріалі лексико-семантичного поля "річ")

    Get PDF
    В статье рассматриваются лексико-семантические особенности эврисемантов в украинском языке, осуществляется их семантическая классификация, методом компонентного анализа проводится структурный анализ. Представлен фрагмент иерархично упорядоченной парадигмы широкозначных имен существительных, состоящий из ЛСГ "Предмет" и "Дело".У статті розглядаються лексико-семантичні особливості еврісемантів української мови, здійснюється їх семантична класифікація, за допомогою компонентного аналізу проводиться структурний аналіз. Подається фрагмент ієрархічно впорядкованої парадигми широкозначних іменників, представлений ЛСГ "Предмет" та "Справа".In this article lexica-semantic peculiarities of everysemantical nouns in Ukrainian are considered. It was made semantic distinguishing and structural analysis of those elements. The everysemants of a lexica-semantic field "Thing", represented by two groups "Subject" and "Work", are disposed in specific hierarchy

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF
    Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10−8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. There are 286 authors of this articles not all are listed in this record

    Association of Genetically Predicted Lipid Levels With the Extent of Coronary Atherosclerosis in Icelandic Adults.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadImportance: Genetic studies have evaluated the influence of blood lipid levels on the risk of coronary artery disease (CAD), but less is known about how they are associated with the extent of coronary atherosclerosis. Objective: To estimate the contributions of genetically predicted blood lipid levels on the extent of coronary atherosclerosis. Design, setting, and participants: This genetic study included Icelandic adults who had undergone coronary angiography or assessment of coronary artery calcium using cardiac computed tomography. The study incorporates data collected from January 1987 to December 2017 in Iceland in the Swedish Coronary Angiography and Angioplasty Registry and 2 registries of individuals who had undergone percutaneous coronary interventions and coronary artery bypass grafting. For each participant, genetic scores were calculated for levels of non-high-density lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides, based on reported effect sizes of 345 independent, lipid-associated variants. The genetic scores' predictive ability for lipid levels was assessed in more than 87 000 Icelandic adults. A mendelian randomization approach was used to estimate the contribution of each lipid trait. Exposures: Genetic scores for levels of non-HDL-C, LDL-C, HDL-C, and triglycerides. Main outcomes and measures: The extent of angiographic CAD and coronary artery calcium quantity. Results: A total of 12 460 adults (mean [SD] age, 65.1 [10.7] years; 8383 men [67.3%]) underwent coronary angiography, and 4837 had coronary artery calcium assessed by computed tomography. A genetically predicted increase in non-HDL-C levels by 1 SD (38 mg/dL [to convert to millimoles per liter, multiply by 0.0259]) was associated with greater odds of obstructive CAD (odds ratio [OR], 1.83 [95% CI, 1.63-2.07]; P = 2.8 × 10-23). Among patients with obstructive CAD, there were significant associations with multivessel disease (OR, 1.26 [95% CI, 1.11-1.44]; P = 4.1 × 10-4) and 3-vessel disease (OR, 1.47 [95% CI, 1.26-1.72]; P = 9.2 × 10-7). There were also significant associations with the presence of coronary artery calcium (OR, 2.04 [95% CI, 1.70-2.44]; P = 5.3 × 10-15) and loge-transformed coronary artery calcium (effect, 0.70 [95% CI, 0.53-0.87]; P = 1.0 × 10-15). Genetically predicted levels of non-HDL-C remained associated with obstructive CAD and coronary artery calcium extent even after accounting for the association with LDL-C. Genetically predicted levels of HDL-C and triglycerides were associated individually with the extent of coronary atherosclerosis, but not after accounting for the association with non-HDL cholesterol. Conclusions and relevance: In this study, genetically predicted levels of non-HDL-C were associated with the extent of coronary atherosclerosis as estimated by 2 different methods. The association was stronger than for genetically predicted levels of LDL-C. These findings further support the notion that non-HDL-C may be a better marker of the overall burden of atherogenic lipoproteins than LDL-C.deCODE genetics/Amgen Inc

    Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study

    Get PDF
    Background: Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear. Methods: We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts. Findings: The median follow-up was 9·9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1·44, 95% CI 1·14–1·83) and the presence of either LPA SNP (1·88, 1·40–2·53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0·95, 0·81–1·11 and either LPA SNP 1·10, 0·92–1·31) or cardiovascular mortality (0·99, 0·81–1·2 and 1·13, 0·90–1·40, respectively) or in the validation studies. Interpretation: In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established. Funding: Seventh Framework Programme for Research and Technical Development (AtheroRemo and RiskyCAD), INTERREG IV Oberrhein Programme, Deutsche Nierenstiftung, Else-Kroener Fresenius Foundation, Deutsche Stiftung für Herzforschung, Deutsche Forschungsgemeinschaft, Saarland University, German Federal Ministry of Education and Research, Willy Robert Pitzer Foundation, and Waldburg-Zeil Clinics Isny

    Coding variants in RPL3L and MYZAP increase risk of atrial fibrillation

    Get PDF
    Source at https://doi.org/10.1038/s42003-018-0068-9. Most sequence variants identified hitherto in genome-wide association studies (GWAS) of atrial fibrillation are common, non-coding variants associated with risk through unknown mechanisms. We performed a meta-analysis of GWAS of atrial fibrillation among 29,502 cases and 767,760 controls from Iceland and the UK Biobank with follow-up in samples from Norway and the US, focusing on low-frequency coding and splice variants aiming to identify causal genes. We observe associations with one missense (OR = 1.20) and one splice-donor variant (OR = 1.50) in RPL3L, the first ribosomal gene implicated in atrial fibrillation to our knowledge. Analysis of 167 RNA samples from the right atrium reveals that the splice-donor variant in RPL3L results in exon skipping. We also observe an association with a missense variant in MYZAP (OR = 1.38), encoding a component of the intercalated discs of cardiomyocytes. Both discoveries emphasize the close relationship between the mechanical and electrical function of the heart

    Genetic insight into sick sinus syndrome

    Get PDF
    Aims. The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. Methods and results. We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1–1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10⁻²⁰), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). Conclusion. We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS

    Sequence variants with large effects on cardiac electrophysiology and disease.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadFeatures of the QRS complex of the electrocardiogram, reflecting ventricular depolarisation, associate with various physiologic functions and several pathologic conditions. We test 32.5 million variants for association with ten measures of the QRS complex in 12 leads, using 405,732 electrocardiograms from 81,192 Icelanders. We identify 190 associations at 130 loci, the majority of which have not been reported before, including associations with 21 rare or low-frequency coding variants. Assessment of genes expressed in the heart yields an additional 13 rare QRS coding variants at 12 loci. We find 51 unreported associations between the QRS variants and echocardiographic traits and cardiovascular diseases, including atrial fibrillation, complete AV block, heart failure and supraventricular tachycardia. We demonstrate the advantage of in-depth analysis of the QRS complex in conjunction with other cardiovascular phenotypes to enhance our understanding of the genetic basis of myocardial mass, cardiac conduction and disease
    corecore