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Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor
allele frequency, MAF > 0.05). In a meta-analysis of up to >1.3 million participants, we
discovered 106 new BP-associated genomic regions and 87 rare (MAF < 0.01) variant BP
associations (P< 5 x 10°8), of which 32 were in new BP-associated loci and 55 were independent
BP-associated SNVs within known BP-associated regions. Average effects of rare variants (44%
coding) were ~8 times larger than common variant effects and indicate potential candidate causal
genes at new and known loci (e.g. GATAS5, PLCB?3). BP-associated variants (including rare and
common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal
development with BP regulation in later life. Multivariable Mendelian randomization suggested
possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study
demonstrates the utility of rare variant analyses for identifying candidate genes and the results
highlight potential therapeutic targets.

Increased blood pressure (BP) is a major risk factor for cardiovascular disease (CVD) and
related disability worldwide. Its complications are estimated to account for ~10.7 million
premature deaths annuallyl. Genome-wide association studies (GWAS) and exome array-
wide association studies (EAWAS) have identified over 1,000 BP-associated single
nucleotide variants (SNVs)2-19 for this complex, heritable, polygenic trait. The majority of
these are common SNVs (MAF > 0.05) with small effects on BP. Most reported associations
involve non-coding SNVs, and due to linkage disequilibrium (LD) between common
variants, these studies provide limited insights into the specific causal genes through which
their effects are mediated. The exome array was designed to facilitate analyses of rare
coding variants (MAF < 0.01) with potential functional consequences. Over 80% of SNVs
on the array are rare, ~6% are low frequency (0.01 < MAF < 0.05), and ~80% are missense,
1.e. the variants implicate a candidate causal gene through changes to the amino acid
sequence. Previously, using the exome array, we identified four BP loci with rare variant
associations (RBMA47, COL21A1, RRAS, DBH)1314 and a rare nonsense BP variant in
ENPEP, encoding an aminopeptidase with a known role in BP regulation!3. These findings
confirmed the utility of rare variant studies for identifying potential causal genes. These rare
variant associations had larger effects on BP (typically ~1.5 mmHg per minor allele) than
common variants identified by previous studies (typically ~0.5 mmHg per minor allele),
many of which had power to detect common variants with large effects. Here, we combine
the studies from our previous two exome array reports with additional studies, including the
UK Biobank (UKBB) study, to analyze up to ~1.319 million participants and investigate the
role of rare SNVs in BP regulation.

Results

We performed an EAWAS and a rare variant GWAS (RV-GWAS) of imputed and genotyped
SNVs to identify variants associated with BP traits, hypertension (HTN), and inverse normal
transformed systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) using (i) single
variant analysis and (ii) a gene-based test approach. An overview of our study design for
both the EAWAS and for the RV-GWAS is provided in Figure 1.
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Blood pressure associations in the EAWAS

We performed a discovery meta-analysis to identify genetic variants associated with BP in
up to ~1.32 million individuals. To achieve this, we first performed a meta-analysis of
247,315 exome array variants in up to 92 studies (870,217 participants, including UKBB)
for association with BP, Stage 1 (Fig. 1, Methods, and Supplementary Information). There
were 362 BP loci known at the time of the analysis (Supplementary Table 1), 240 of which
were covered on the exome array. To improve statistical power for discovery for a subset of
variants significant in Stage 1 at £< 5 x 108 outside of the known BP regions
(Supplementary Table 1a), we requested summary association statistics from three additional
studies (Million Veteran Program (MVP), deCODE, and GENOA). We then performed
meta-analyses of the three data request studies and Stage 1 results to discover novel variants
associated with BP. In total, 343 SNVs (200 genomic regions; Methods) were associated (P
< 5 x 10°8) with one or more BP traits in the Stage 2 single variant European (EUR) EAWAS
meta-analyses involving up to ~1.168 million individuals (Table 1, Fig. 2, Supplementary
Table 2, and Supplementary Information). A further seven SNVs (seven genomic regions)
were only associated (P< 5 x 1078) in the pan-ancestry (PA) meta-analyses of ~1.319
million individuals (Supplementary Table 2). All 350 SNV-BP associations were novel at the
time of analysis (204 loci), 220 have subsequently been reported?%-21, and 130 SNVs (99
loci) remain novel, including nine rare and 13 low-frequency SNVs (Fig. 2, Supplementary
Table 2, Supplementary Fig. 1).

All nine novel rare BP-associated SNVs identified in the EAWAS were conditionally
independent of common variant associations within the respective regions (Supplementary
Table 3) using the multi-SNP-based conditional and joint association analysis (GCTA
v1.91.4)22 with the Stage 1 EUR EAWAS results (Methods and Supplementary Table 4). In
addition to the rare variants, there were 147 additional distinct (P< 1 x 10°) common SNV-
BP associations (46% were missense variants), and 18 distinct low-frequency SNVs (89%
were missense). Approximately 59% of the distinct BP-associated SNVs were coding or in
strong LD (72 > 0.8) with coding SNVs. In total, 42 of the 99 novel loci had two or more
distinct BP-associated SNVs in the conditional analyses. Of the 50 loci that were previously
identified using UKBB6:17 and were on the exome array, 43 replicated at 2< 0.001
(Bonferroni correction for 50 known variants) in samples independent of the original
discovery (Supplementary Table 5).

Blood pressure associations from EUR RV-GWAS

We tested a further 29,454,346 (29,404,959 imputed and 49,387 genotyped) rare SNVs for
association with BP in 445,360 UKBB participants?3 using BOLT-LMM?24 (Fig. 1 and
Methods). The SNVs analyzed as part of the EAWAS were not included in the RV-GWAS.
Similar to EAWAS, within RV-GWAS we performed a single discovery meta-analyses to
identify rare SNVs associated with BP. In Stage 1 (UKBB), 84 rare SNVs outside of the
known BP loci (at the time of our analyses) were associated with one or more BP traits at 2
<1 x 107 (Supplementary Table 6). Additional data were requested from MVP for the 84
BP-associated SNVs in up to 225,112 EUR from the MVP, and 66 were available. Meta-
analyses of Stage 1 (UKBB) and results obtained from MVP were performed for novel rare
variant discovery. We identified 23 unique rare SNVs associated with one or more BP traits

Nat Genet. Author manuscript; available in PMC 2021 March 25.
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(P< 5 x 1078) with consistent direction of effects in a meta-analysis of UKBB and MVP
(Min P heterogeneity = 0.02) (Table 1, Fig. 2, Supplementary Table 7, and Supplementary Fig.
1). Two of the SNVs, rs55833332 (p.Arg35Gly) in NEK7and rs200383755 (p.Ser19Trp) in
GATAS5, were missense. Eleven rare SNVs were genome-wide significant in UKBB alone
but were not available in MVP and await further support in independent studies
(Supplementary Table 7).

Rare and low frequency variant associations at established BP loci

It is difficult to prioritize candidate genes at common variant loci for functional follow up.
We believe analysis of rare (MAF < 0.01) and very low frequency coding variants (MAF <
0.02) in known loci may provide further support for or identify a candidate causal gene at a
locus. Twelve of the 240 BP-associated regions had one or more conditionally independent
rare variant associations (P< 1076 in the GCTA joint model of the EUR Stage 1 EAWAS;
Methods, Table 2, and Supplementary Table 3). A further nine loci had one or more
conditionally independent BP-associated SNVs with MAF < 0.02 (Table 2 and
Supplementary Table 8). In total, 183 SNVs (rare and common) across 110 known loci were
not identified previously.

We used FINEMAP? to fine-map 315 loci known at the time of our analysis and available
in UKBB GWAS, which provides dense coverage of genomic variation not available on the
exome array. Of these, 36 loci had one or more conditionally independent rare variant
associations (Supplementary Table 8), and 251 loci had multiple common variants
associations. We also replicated rare variant associations that we reported previously3.14 at
RBMA47, COL21A1, RRAS, and DBH (P<5 x 10) in UKBB (independent of prior
studies). Overall, from both FINEMAP and GCTA, we identified 40 loci with one or more
rare SNV associations, independent of previously reported common variant associations
(Table 3, Fig. 2, Supplementary Table 8, and Supplementary Information).

We note that, of 256 known variants identified without UKBB participants (Supplementary
Table 1a), 229 replicated at £< 1.95 x 10 (Bonferroni adjusted for 256 variants) in UKBB.

Gene-based tests to identify BP-associated genes

To test whether rare variants in aggregate affect BP regulation, we performed gene-based
tests for SBP, DBP, and PP using SKAT?26 (https://genome.sph.umich.edu/wiki/
RareMETALS), including SNVs with MAF < 0.01 that were predicted by VEP?’ to have
high or moderate impact (Methods). We performed separate analyses within the Stage 1
EAWAS and the UKBB RV-GWAS. Six genes in the EAWAS (FASTKDZ2, CPXM_2, CENPJ,
CDC42EP4, OTOP2, SCARF2) and two in the RV-GWAS (FRY, CENPJ) were associated
with BP (P< 2.5 x 106, Bonferroni adjusted for ~20,000 genes) and were outside known
and new BP loci (Supplementary Tables 1 and 9). To ensure these associations were not
attributable to a single (sub-genome-wide significant) rare variant, we also performed SKAT
tests conditioning on the variant with the smallest A-value in the gene (Methods and
Supplementary Table 9). FRY had the smallest conditional P-value (P= 0.0004), but did not
pass our pre-determined conditional significance threshold (conditional SKAT P£< 0.0001;
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Methods), suggesting that all gene associations are due to single (sub-genome-wide
significant) rare variants and not due to the aggregation of multiple rare variants.

Amongst the known loci, five genes (NPR1, DBH, COL21A1, NOX4, GEM) were
associated with BP due to multiple rare SNVs independent of the known common variant
associations (conditional A< 1 x 10-%; Methods, Supplementary Information, and
Supplementary Table 9) confirming the findings in the single variant conditional analyses
above (Supplementary Table 8).

We also performed gene-based tests using a MAF < 0.05 threshold to assess sensitivity to
the MAF < 0.01 threshold. The results were concordant with the MAF < 0.01 threshold
findings, and two new genes (PLCB3and CEP120) were associated with BP due to multiple
SNVs and were robust to conditioning on the top SNV in each gene (Supplementary
Information and Supplementary Table 9).

Rare variant BP associations

In total, across the EAWAS and the RV-GWAS, there were 32 new BP-associated rare
variants spanning 18 new loci (Table 1 and Fig. 2). Of these 32, five (representing five loci)
were genome-wide significant for HTN, 22 (ten loci) for SBP, 14 (six loci) for DBP, and 15
(ten loci) for PP (Supplementary Tables 1, 2, 3, 6, and 7). Ten of the new rare variants were
missense. Within previously reported loci, there were 55 independent rare-variant
associations (representing 40 loci) from either the EAWAS or RV-GWAS, making a total of
87 independent rare BP-associated SNVs. We identified 45 BP-associated genes, eight of
which were due to multiple rare variants and independent of common variant associations (P
<1 x 104, Methods). Twenty-one rare variants were located within regulatory elements (e.g.
enhancers), highlighting genetic influence on BP levels through gene expression (Fig. 2).
The rare variants contributed to BP variance explained (Supplementary Information).

Power calculations are provided in the Supplementary Information and show that our study
had 80% power to detect an effect of 0.039 SD for a MAF = 0.01 (Extended Data Fig. 1). As
anticipated, given statistical power, some rare variants displayed larger effects on BP
regulation than common variants (Fig. 2 and Supplementary Tables 3, 7, and 8); mean
effects of rare SNVs for SBP and DBP were ~7.5 times larger than common variants (mean
effect ~0.12 SD/minor allele for rare SNVs, ~0.035 SD/minor allele for low-frequency and
~0.016 SD/minor allele for common SNVs) and for PP were 8.5 times larger for rare
variants compared to common (mean effect ~0.135 SD/minor allele for rare SNVs, ~0.04
SD/minor allele for low-frequency and ~0.016 SD/minor allele for common SNVs). Our
study was exceptionally well-powered to detect common variants (MAF > 0.05) with
similarly large effects but found none, consistent with earlier BP GWAS and genetic studies
of some other common complex traits28:29:36,

Overlap of rare BP associations with monogenic BP genes

Twenty-four genes are reported in ClinVar to cause monogenic conditions with hypertension
or hypotension as a primary phenotype. Of these, three (NR3C2, AGT, PDE3A) were
associated with BP in SKAT tests in the EAWAS (P < 0.002, Bonferroni adjusted for 24

Nat Genet. Author manuscript; available in PMC 2021 March 25.
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tests; Supplementary Table 10). These genes also had genome-wide significant SNV-BP
associations in the EAWAS and/or RV-GWAS (Supplementary Table 10).

Functional annotation of rare BP-associated SNVs

None of the BP-associated rare SNVs (from known or novel loci) had been previously
reported as expression quantitative trait loci (eQTL) in any tissue (P> 5 x 10°8;
Supplementary Table 11 and Methods). We used GTEX v7 data to examine in which tissues
the genes closest to the rare BP-SNVs were expressed (Extended Data Fig. 2 and
Supplementary Table 4). Many of the eQTL gene transcripts were expressed in BP-relevant
tissues (e.g. kidney, heart, and arteries). We observed significant enrichment (Bonferroni
adjusted £< 0.05) in liver, kidney, heart left ventricle, pancreas, and brain tissues, where the
BP genes were down-regulated. In contrast, the BP genes were up-regulated in tibial artery,
coronary artery, and aorta (Extended Data Fig. 3). There were 33 genes at 30 known loci
with novel BP rare variants (from Supplementary Table 12); distinct known common BP
variants at these known loci were eQTLs for 52% of these genes, providing additional
evidence that the rare variants implicate plausible candidate genes (Supplementary Table
12).

We tested whether genes near rare BP-associated SNVs were enriched in gene sets from
Gene Ontology (GO), KEGG, Mouse Genome Informatics (MGI), and Orphanet (Methods
and Supplementary Table 4). These (rare variant) genes from both known and novel loci
were enriched in BP-related pathways (Bonferroni adjusted £ < 0.05; Methods and
Supplementary Table 13), including “regulation of blood vessel size” (GO) and “renin
secretion” (KEGG). Genes implicated by rare SNVs at known loci were enriched in “tissue
remodeling” and “artery aorta” (GO). Genes implicated by rare SNVs at new BP-loci were
enriched in rare circulatory system diseases (that include hypertension and rare renal
diseases) in Orphanet.

Potential therapeutic insights from the rare BP-associated SNVs

Twenty-three of the genes near rare or low-frequency BP-associated variants in novel and
known loci were potentially druggable as suggested by the “druggable genome™30
(Supplementary Information and Supplementary Tables 4 and 14). Six genes (four with rare
variants) are already drug targets for CVD conditions, while 15 others are in development or
used for other conditions. As an example, the renin-angiotensin-aldosterone system (RAAS)
is one of the principal homeostatic mechanisms for BP control, and aldosterone is the main
mineralocorticoid (secreted by adrenal glands) and binds receptors, including NR3CZ,
resulting in sodium retention by the kidney and increased potassium excretion.
Spironolactone is an aldosterone antagonist widely used in heart failure and as a potassium-
sparing anti-hypertensive medication that targets NR3C2 (Open targets: https://
Www.opentargets.org).

Overlap of new BP-associations with metabolites

To identify novel BP variants that are metabolite QTLs, we performed /n silico lookups of
new sentinel and conditionally independent BP variants for association with 913 plasma
metabolites measured using the Metabolon HD4 platform in ~14,000 individuals (Methods
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and Supplementary Table 4). Nine BP-associated variants were associated with 25
metabolites (P< 5 x 1078) involved in carbohydrate, lipids, cofactors and vitamins,
nucleotide (cysteine), and amino acid metabolism (Supplementary Table 15), while 11 were
unknown.

We performed MR analyses to assess the influence of the 14 known metabolites
(Supplementary Table 15) on BP. Lower levels of 3-methylglutarylcarnitine(2) (acyl
carnitines involved in long-chain fatty acid metabolism in mitochondria and in leucine
metabolism) were significantly associated with increased DBP (P < 0.003, 0.05/14
metabolites; Supplementary Table 16). There was no suggestion of reverse causation, i.e. BP
did not affect 3-methylglutarylcarnitine(2) (P> 0.04; Supplementary Table 16). We further
tested whether the association with 3-methylglutarylcarnitine(2) was due to pleiotropic
effects of other metabolites in a multivariable MR framework, but found it was still causally
associated with DBP (Supplementary Information and Supplementary Table 16).

New BP-associated SNVs are gene eQTLS across tissues

Sentinel variants from 66 new BP loci were associated (P< 5 x 10-8) with gene expression
(or had r2> 0.8 in 1000G EUR with eQTLS) in publicly available databases (Methods and
Supplementary Tables 4 and 11). We performed colocalization for 49 of the 66 BP loci (169
genes) with significant eQTLs available in GTEx v7, jointly across all 48 tissues and the BP
traits using HyPrColoc3! (Methods), to verify that the eQTL and BP-SNV associations were
due to the same SNV and not due to LD or spurious pleiotropy32. The BP associations and
eQTL colocalized at 17 BP loci with a single variant (posterior probability, PPa > 0.6), i.e.
the expression and BP associations were due to the same underlying causal SNV (Fig. 3 and
Supplementary Table 17). A further 10 loci had PPa > 0.6 for colocalization of BP
associations and eQTL for multiple nearby genes (Fig. 3). Colocalization analyses were also
performed for the 35 eQTLs in whole blood from the Framingham Heart Study, and five
additional loci were consistent with a shared SNV between BP and gene expression
(Supplementary Table 17).

Given the central role of the kidney in BP regulation, we investigated if BP-associated SNVs
from the EAWAS were kidney eQTLs using TRANScriptome of renaL. humAn TissuE study
and The Cancer Genome Atlas study (/7= 285; Methods 33:34). We observed significant
eQTL associations (P< 5 x 10°8) at three newly identified BP loci (MFAPZ, NFU1, and
AAMDC, which were also identified in GTEX) and six at previously published loci (ERAFI,
ERAP2 KIAA0141, NUDT13, RP11-582E3.6, and ZNF100; Supplementary Table 18).

New BP-associated SNVs are pQTLs

Eighteen BP loci had sentinel variants (or were in LD with BP SNVs, 72> 0.8 in 1000G
EUR) that were also protein QTL (pQTL) in plasma. Across the 18 loci, BP-SNVs were
pQTLs for 318 proteins (Supplementary Table 19). Low-frequency SNVs in MCL 1 and
LAMAS were cis-pQTL for MCL1 and LAMAS, respectively. The BP-associated SNV,
rs4660253, is a cis-pQTL and cis-eQTL for 7/E1 across eight tissues in GTEX including
heart (Fig. 3 and Supplementary Table 17). The DBP-associated SNV, rs7776054, is in
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strong LD with rs9373124, which is a trans-pQTL for erythropoietin, a hormone mainly
synthesized by the kidneys, which has links to hypertension.

Pathway and enrichment analyses

The over-representation of rare and common BP SNVs in DNasel-hypersensitive sites
(DHS), which mark open chromatin, was tested using GARFIELD (Methods and
Supplementary Table 4). The most significant enrichment in DHS hotspots for SBP-
associated SNVs was in fetal heart tissues, with an ~3-fold enrichment compared to ~2-fold
in adult heart (Fig. 3 and Supplementary Information). This difference in enrichment was
also reflected in fetal muscle compared to adult muscle for SBP-associated SNVs. The most
significant enrichment for DBP- and PP-associated SNVs (~3-fold) was in blood vessels
(Fig. 3 and Supplementary Information). There was also enrichment across SBP, DBP and
PP in fetal and adult kidney and fetal adrenal gland. In support, complementary enrichment
analyses with FORGE (Methods) showed similar enrichments including in fetal kidney and
fetal lung tissues (Z~score = 300; Supplementary Table 13 and Supplementary Information).

Mendelian randomization with CVD

Twenty-six new BP loci were also associated with cardiometabolic diseases and risk factors
in PhenoScanner3® (http://www.phenoscanner.medschl.cam.ac.uk) (Methods, Fig. 3,
Supplementary Information, and Supplementary Tables 4, 20, and 21). Given that BP is a
key risk factor for CVD, we performed Mendelian randomization (MR) analyses to assess
the causal relationship of BP with any stroke (AS), ischemic stroke (1S), large artery stroke
(LAS), cardio-embolic stroke (CE), small vessel stroke (SVS), and coronary artery disease
(CAD) using all the distinct BP-associated SNVs from our study (both known and new;
Supplementary Table 4 and Methods). BP was a predictor of all stroke types analyzed and
CAD (Fig. 4 and Supplementary Fig. 4). Notably, SBP had the strongest effect on all CVD
phenotypes, with the most profound effect on LAS, increasing risk by >2-fold per SD
(Supplementary Table 22). BP had weakest effect on CE, which may reflect the greater role
of atrial fibrillation versus BP in CE risk. Multi-variable MR analyses, including both SBP
and DBP, showed that the effect of DBP attenuated to zero once SBP was accounted for
(consistent with observational studies®’), except for LAS (Fig. 4, Supplementary Table 22,
and Methods), where SBP/DBP had a suggestive inverse relationship, perhaps reflecting
arterial stiffening. An inverse relationship between DBP and stroke above age 50 years has
also been reported3’.

Discussion

Unlike most previous BP studies that focused primarily on common variant associations, the
novelty of this investigation is the extensive analysis of rare variants, both individually and
in aggregate within a gene. Many of the new rare variants are located in genes that
potentially have a role in BP regulation, as evidenced by support from existing mouse
models (21 genes) and/or have previously been implicated in monogenic disorders (11
genes) whose symptoms include hyper-/hypotension or impaired cardiac function/
development (Supplementary Table 12). For example, rs139600783 (p.Pro274Ser) was
associated with increased DBP and is located in the ARHGAP31 gene that causes Adams-
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Oliver syndrome, which can be accompanied by pulmonary hypertension and heart defects.
A further three (of the six) genes that cause Adams-Oliver syndrome are located in BP-
associated loci (DLL416, DOCK61315 and NOTCH1, a new BP locus). A missense variant
rs200383755 (p.Ser19Trp, predicted deleterious by SIFT), located in the GATAS, encoding a
transcription factor, is associated with increased SBP and DBP. GATAS5 mutations cause
congenital heart defects, including bicuspid aortic valve and atrial fibrillation, while a
Gata5-null mouse model had increased SBP and DBP at 90 days38.

Within the known loci, we detected new rare variant associations at several candidate genes,
e.g. a rare missense SNV rs1805090 (MAF = 0.0023) in the angiotensinogen (AG7) gene
was associated with increased BP independently of the known common variant association.
AGT is known to have an important role in BP regulation, and the variant is predicted to be
among the top 1% of most deleterious substitutions3®. The established common variant at
FOXS1 was not associated with BP in the conditional analysis, but new rare variants in
FOXS1 (rs45499294, p.Glu74Lys; MAF = 0.0037) and MYLKZ2 (rs149972827; MAF =
0.0036; Supplementary Information) were associated with BP. Two BP-associated SNVs
(rs145502455, p.11e806Val; rs117874826, p.Glu564Ala) highlight PLCB3 as a candidate
gene. Phospholipase C is a key enzyme in phosphoinositide metabolism, with PLCB3 as the
major isoform in macrophages??, and a negative regulator of VEGF-mediated vascular
permeability, a key process in ischemic disease and cancer*l. PLCB3 deficiency is
associated with decreased atherogenesis, increased macrophage apoptosis in atherosclerotic
lesions, and increased sensitivity to apoptotic induction /n vitro4°. Variants in SOS2have
previously been linked to kidney development/function?? and also cause Noonan syndromes
1 and 9, which are rare inherited conditions characterized by craniofacial dysmorphic
features and congenital heart defects, including hypertrophic cardiomyopathy3. Here we
report the rare variant rs72681869 (p.Arg191Pro) in SOSZ2as associated with SBP, DBP, PP,
and HTN, highlighting SOS2as a candidate gene. Previously, we identified a rare missense
BP-associated variant in RRAS, a gene causing Noonan syndromel3. Our discoveries of rare
missense variants at known BP loci provide additional support for candidate genes at these
loci.

We report new low-frequency variant associations, such as the missense variant rs45573936
(T>C, 11e216Thr) in SLC29A1. The minor allele is associated with both decreased SBP and
DBP (Table 1), and the SNV has been shown to affect the function of the encoded protein,
equilibrative nucleoside transporter (ENT1)#4. Best et al.#> showed that loss of function of
ENT1 caused an (~2.75-fold) increase in plasma adenosine and (~15%) lower BP in mice.
Drugs, including dipyridamole and S-(4-Nitrobenzyl)-6-thioinosine (NBTI, NBMPR), are
currently used as ENT1 inhibitors for their anti-cancer, anti-cardio, and neuro-protective
properties, and our results provide the genetic evidence to indicate that ENT1 inhibition
might lower BP in humans.

We found greater enrichment of SBP-associated SNVs in DHS hotspots in fetal vs. adult
heart muscle tissue. These results suggest that BP-associated SNVs may influence the
expression of genes that are critical for fetal development of the heart. This is consistent
with our finding that some BP-associated genes also cause congenial heart defects (see
above). Furthermore, de novo mutations in genes with high expression in the developing
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heart, as well as in genes that encode chromatin marks that regulate key developmental
genes, have previously been shown to be enriched in congenital heart disease patients*6:47. A
recent study of atrial fibrillation genetics, for which BP is a risk factor, described enrichment
in DHS in fetal heart#®. The authors hypothesized that the corresponding genes acting during
fetal development increase risk of atrial fibrillation8. Together, these data suggest that early
development and/or remodeling of cardiac tissues may be an important driver of BP
regulation later in life.

The BP measures we have investigated here are correlated; amongst the 107 new genetic BP
loci, only two are genome-wide significant across all four BP traits (RP11-284M14.1 and
VTN, Fig. 2). None of the new loci were unique to HTN (Fig. 2), perhaps as HTN is derived
from SBP and DBP, or perhaps due to reduced statistical power for a binary trait. The results
from our study indicate rare BP-associated variants contribute to BP variability in the
general population, and their identification has provided information on new candidate genes
and potential causal pathways. We have primarily focused on the exome array, which is
limited. Future studies using both exome and whole genome sequencing in population
cohorts (e.g. UKBB and TOPMed) will lead to identification of further rare variant
associations and may advance the identification of causal BP genes across the ~1,000
reported BP loci.

Online Methods

The statistical methods used and analytical packages used are further detailed in the Life
Sciences Reporting Summary.

Participants

The cohorts contributing to Stage 1 of the EAWAS comprised 92 studies from four consortia
(CHARGE, CHD Exome+, GoT2D:T2DGenes, ExomeBP), and UK Biobank (UKBB)
totalling 870,217 individuals of European (EUR, n=810,865), African Ancestry (AA, n=
21,077), South Asian (SAS, n=33,689), and Hispanic (HIS, /7= 4,586) ancestries. Study-
specific characteristics, sample quality control and descriptive statistics for the new studies
are provided in Supplementary Tables 23 and 24 (and in Supplementary Table 1 and 2 of
Surendran et af. 13 (https://media.nature.com/original/nature-assets/ng/journal/v48/n10/
extref/ng.3654-S2.xIsx) and Supplementary Table 20 of Liu et a/. 14 (https:/
media.nature.com/original/nature-assets/ng/journal/v48/n10/extref/ng.3660-S1.pdf) for the
previously published studies).

For EAWAS, summary association statistics were requested (for the SNVs with <5 x 108,
outside of known BP loci) from the following cohorts: 127,478 Icelanders from deCODE;
225,113 EUR, 63,490 AA, 22,802 HIS, 2,695 NAm (Native Americans), and 4,792 EAS
(East Asians) from the Million Veterans Program (MVP); and 1,505 EUR and 792 AA
individuals from the Genetic Epidemiology Network of Arteriopathy (GENOA). In total,
following the data request, 448,667 individuals of EUR (7= 354,096), AA (n=63,282), HIS
(n=22,802), NAm (n=2,695), and EAS (1= 4,792) ancestries were available for meta-
analyses with Stage 1. Study specific characteristics are provided in Supplementary Tables
23 and 24.
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Stage 1 of the RV-GWAS used data from 445,360 EUR individuals from UKBB
(Supplementary Tables 23 and 24, Supplementary Information), and rare variants were
followed up in a data request involving 225,112 EUR individuals from MVP.

All participants provided written informed consent, and the studies were approved by their
local research ethics committees and/or institutional review boards. The BioVU
biorepository performed DNA extraction on discarded blood collected during routine
clinical testing, and linked to de-identified medical records.

SBP, DBP, PP and HTN were analyzed. Details of the phenotype measures for the
previously published studies can be found in the Supplementary Information of the
Surendran et al. and Liu et al. papers (https://media.nature.com/original/nature-assets/ng/
journal/v48/n10/extref/ng.3654-S2.xlIsx; https://media.nature.com/original/nature-assets/ng/
journal/v48/n10/extref/ng.3660-S1.pdf), and further details of the additional studies are
provided in Supplementary Table 24 and Supplementary Information. Typically, the average
of two baseline measurements of SBP and DBP were used. For individuals known to be
taking BP-lowering medication, 15 and 10 mmHg were added to the raw SBP and DBP
values, respectively, to obtain medication-adjusted values*®. PP was defined as SBP minus
DBP after medication adjustment. For HTN, individuals were classified as hypertensive
cases if they satisfied at least one of the following criteria: (i) SBP = 140 mmHg, (ii) DBP =
90 mmHg, or (iii) use of antihypertensive or BP-lowering medication. All other individuals
were considered controls. Further information on study-specific BP measurements is
provided in Supplementary Table 24. Residuals from the null model obtained after
regressing the medication-adjusted trait on the covariates (age, age?, sex, BMI, principal
components (PCs) to adjust for population stratification, in addition to any study-specific
covariates) within a linear regression model were ranked and inverse normalized
(Supplementary Information).

The majority of the studies were genotyped using one of the lllumina HumanExome
BeadChip arrays (Supplementary Table 24). An exome chip quality control standard
operating procedure (SOP: https://ruderd02.u.hpc.mssm.edu/Exome-chip-QC.pdf)
developed by A. Mahajan, N.R.R. and N.W.R. at the Wellcome Trust Centre for Human
Genetics, University of Oxford was used by some studies for genotype calling and quality
control, while the CHARGE implemented an alternative approach®® (Supplementary Table
24 and Supplementary Tables 3 and 21, respectively, of Surendran et al.13 and Liu et al.14).
All genotypes were aligned to the plus strand of the human genome reference sequence
(build 37) before any analyses and any unresolved mappings were removed. UKBB, MVP,
and deCODE were genotyped using GWAS arrays (Supplementary Table 24).

Exome array meta-analyses

Study-specific analyses were performed to test for the association of 247,315 SNVs with
SBP, DBP, PP and HTN in 810,865 individuals of European ancestry (75 EUR studies) and
additionally in 59,352 individuals of non-European ancestry comprising of SAS (5 studies),
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AA (10 studies), and HIS (2 studies) individuals (Supplementary Information). Study-
specific association summaries were meta-analyzed in Stage 1 using an inverse-variance-
weighted fixed-effect meta-analyses implemented in METALS2, Fixed effect and random
effects meta-analyses showed concordant results (Supplementary Table 2). For the binary
trait (HTN), we performed sample-size-weighted meta-analysis.

Minimal inflation in the association test statistic, A, was observed (A = 1.18 for SBP, 1.20
for DBP, 1.18 for PP, and 1.18 for HTN in the EUR meta-analyses; and A = 1.19 for SBP,
1.20 for DBP, 1.18 for PP, and 1.16 for HTN in the PA meta-analyses). The meta-analyses
were performed independently at three centres, and results were found to be concordant
across the centres. Following Stage 1, SNVs outside of known BP-associated regions with P
<5 x 1078 were looked up in individuals from the MVVP, deCODE, and GENOA studies
(data request). Two meta-analyses of the three additional studies for each trait were
performed by two independent analysts, one involving EUR individuals (354,096
participants) only and one PA (448,667 participants). Likewise, two Stage 2 meta-analyses
for each trait were performed by two independent analysts, one EUR (1,167,961
participants) and one PA (1,318,884 participants). SNVs with (a conservative) <5 x 108
in the Stage 2 meta-analysis, with consistent directions of effect in Stage 1 and data request
studies and no evidence of heterogeneity (2> 0.0001), were considered potentially novel®3.

Rare SNVs with A< 5 x 108 (a widely accepted significance threshold®#:5%) in the inverse
variance-weighted meta-analysis of UKBB and MVP, with consistent directions of effect in
Stage 1 and MVP and no evidence of heterogeneity (P> 0.0001), were considered
potentially novel.

Quiality control

As part of the sample QC, plots comparing inverse of the standard error as a function of the
square root of study sample size for all studies were manually reviewed for each trait, and
phenotype-specific study outliers were excluded. In addition, inflation of test static was
manually reviewed for each study and for each phenotype and confirmed minimal or no
inflation prior to Stage 1 meta-analyses. For EAWAS and RV-GWAS, we performed our own
QC for genotyped variants as we were specifically interested in rare variants and knew that
these were most vulnerable to clustering errors. Full details of UKBB QC are provided in
the Supplementary Note. To ensure that the variants we reported are not influenced by
technical artefacts and not specific to a certain ancestry, we ensured that there was no
heterogeneity and also that the variants had consistent direction of effects between Stage 1
and the data request studies (MVP+deCODE+GENOA). In addition, we ensured that the
association was not driven by a single study. For variants reported in RV-GWAS and
EAWAS, we reviewed the cluster plots for clustering artefacts and removed poorly clustered
variants. Lastly, for RV-GWAS, if the variant was available in UKBB whole exome data
(~50K individuals), we ensured that the minor allele frequencies were consistent with the
imputed MAF despite restricting the reporting of only variant with a good imputation quality
(INFO > 0.8).
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Definition of known loci

For each known variant, pairwise LD was calculated between the known variant and all
variants within the 4-Mb region in the 1000 Genomes phase 3 data restricted to samples of
European (EUR) ancestry. Variants with 72 > 0.1 were used to define a window around the
known variant. The region start and end were defined as the minimum position and
maximum position of variants in LD within the window (72 > 0.1), respectively. Twelve
variants were not in 1000 Genomes, and for these variants, a 500-kb window around the
known variant was used. The window was extended by a further 50 kb and overlapping
regions were merged (Supplementary Table 1).

Conditional analyses

Within the new BP loci, we defined a region based on LD (Supplementary Table 1) within
which conditional analysis was performed (five variants were not in the 1000G panel, and
for these we established a 500-kb window definition). Conditional and joint association
analysis as implemented in Genome-wide Complex Trait Analysis (GCTA v1.91.4)22 was
performed using the EAWAS results to identify independent genetic variants associated with
BP traits within newly identified and known regions available in the exome array. We
restricted this analysis to the summary data from Stage 1 EUR EAWAS meta-analyses (/7=
810,865) as LD patterns were modelled using individual level genotype data from 57,718
EUR individuals from the CHD Exome+ consortium. Variants with Pjgjnt < 1 % 10 were
considered conditionally independent.

We used the UKBB GWAS results and FINEMAPZ v1.1 to fine-map the known BP-
associated regions in order to identify rare variants that are associated with BP
independently of the known common variants (Supplementary Note; due to lack of statistical
power, we did not use UKBB GWAS data alone to perform conditional analyses within the
new EAWAS loci). For each known region, we calculated pairwise Pearson correlation for
all SNVs within a 5-Mb window of the known SNVs using LDstore v1.1. Z-scores
calculated in the UKBB single-variant association analyses were provided as input to
FINEMAP along with the correlation matrix for the region. We selected the configuration
with the largest Bayes Factor (BF) and largest posterior probability as the most likely causal
SNVs. We considered causal SNVs to be significant if the configuration cleared a threshold
of log19BF > 5 and if the variants in the configuration had an unconditional association of 2
<1 x 10°%. We examined the validity of the SNVs identified for the most likely configuration
by checking marginal association P-values and LD (r2) within UKBB between the selected
variants. For loci that included rare variants identified by FINEMAP, we validated the
selected configuration using a linear regression model in R.

Gene-based tests

Gene-based tests were performed using the sequence kernel association test (SKAT)26 as
implemented in the rareMETALS package version 7.1 (https://genome.sph.umich.edu/wiki/
RareMETALS) (which allows for the variants to have different directions and magnitudes of
effect) to test whether rare variants in aggregate within a gene are associated with BP traits.
For the EAWAS, two gene-based meta-analyses were performed for inverse-normal
transformed DBP, SBP, and PP, one of EUR and a second PA including all studies with
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single-variant association results and genotype covariance matrices (up to 691,476 and
749,563 individuals from 71 and 88 studies were included in the EUR and PA gene-based
meta-analyses, respectively).

In UKBB, we considered summary association results from 364,510 unrelated individuals
only. We annotated all SNVs on the exome array using VEP?. A total of 15,884 (EUR) and
15,997 genes (PA) with two or more variants with MAF < 0.01 annotated with VEP as high
or moderate effects were tested. The significance threshold was set at < 2.5 x 10
(Bonferroni adjusted for ~20,000 genes).

A series of conditional gene-based tests were performed for each significant gene. To verify
the gene association was due to more than one variant (and not due to a single sub-genome-
wide significance threshold variant), gene tests were conditioned on the variant with the
smallest P-value in the gene (top variant). Genes with 2 congitional < 1 X 10# were considered
significant, which is in line with locus-specific conditional analyses used in other studies®6.
In order to ensure that gene associations located in known or newly identified BP regions
(Supplementary Note and Supplementary Table 1) were not attributable to common BP-
associated variants, analyses were conditioned on the conditionally independent known/
novel common variants identified using GCTA within the known or novel regions,
respectively, for the EAWAS (or identified using FINEMAP for the GWAS). Genes mapping
to either known or novel loci with P congitional < 1 X 1072, were considered significant. The A-
value to identify gene-based association not driven by a single variant was set in advance of
performing gene-based tests and was based on an estimation of the potential number of
genes that could be associated with BP.

Mendelian randomization with CVDs

We used two-sample MR to test for causal associations between BP traits and any stroke
(AS), any ischemic stroke (IS), large artery stroke (LAS), cardioembolic stroke (CE), small
vessel stroke (SVS), and coronary artery disease (CAD). All the new and known BP-
associated SNVs (including conditionally independent SNVs) listed in Supplementary
Tables 2, 3, 5, 7 and 8, were used as instrumental variables (I1Vs). In addition to trait specific
analyses, we performed an analysis of “generic” BP, in which we used the SNVs associated
with any of the traits. Where variants were associated with multiple BP traits, we extracted
the association statistics for the trait with the smallest ~value (or the largest posterior
probability for the known loci). To exclude potentially invalid (pleiotropic) genetic
instruments, we used PhenoScanner3® to identify SNVs associated with CVD risk factors,
cholesterol (LDL/HDL/triglycerides (TG)), smoking, type 2 diabetes (T2D) and atrial
fibrillation (AF) (Supplementary Table 22) and removed these from the list of 1Vs. We
extracted estimates for the associations of the selected instruments with each of the stroke
subtypes from the MEGASTROKE PA GWAS results (67,162 cases; 454,450 controls)&3
and from a recent GWAS for CAD®4. We applied a Bonferroni correction (P < 0.05/6 =
0.0083) to account for the number of CVD traits. We used the inverse-variance weighting
method with a multiplicative random-effects because we had hundreds of Vs for BP55. We
performed MR-Egger regression, which generates valid estimates even if not all the genetic
instruments are valid, as long as the Instrument Strength Independent of Direct Effect

Nat Genet. Author manuscript; available in PMC 2021 March 25.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Surendran et al.

Page 15

assumption holds®6. We note that MR-Egger has been shown to be conservative®®, but has
the useful property that the MR-Egger-intercept can give an indication of (unbalanced)
pleiotropy, which allowed us to test for pleiotropy amongst the 1Vs. We used MR-PRESSO
to detect outlier 1Vs87. To assess instrument strength, we computed the F-statistic58 for the
association of genetic variants with SBP, DBP and PP, respectively (Supplementary
Information and Supplementary Table 22). We also assessed heterogeneity using the Q-
statistic. Although these methods may have different statistical power, the rationale is that, if
these methods give a similar conclusion regarding the association of BP and CVD, then we
are more confident in inferring that the positive results are unlikely to be driven by violation
of the MR assumptions®®.

Moreover, we used multivariable MR (mvMR) to estimate the effect of multiple variables on
the outcome®:70. This is useful when two or more correlated risk factors are of interest, e.g.
SBP and DBP, and may help to understand whether both risk factors exert a causal effect on
the outcome, or whether one exerts a leading effect on the outcome. Thus, we used multiple
genetic variants associated with SBP and DBP to simultaneously estimate the causal effect
of SBP and DBP on CVDs.

All analyses were performed using R version 3.4.2 with R packages ‘TwoSampleMR’ and
‘MendelianRandomization’ and “MRPRESSO”.

Metabolite quantitative trait loci and Mendelian randomization analyses

Plasma metabolites were measured in up to 8,455 EUR individuals from the INTERVAL
study’%72 and up to 5,841 EUR individuals from EPIC-Norfolk’2 using the Metabolon HD4
platform. In both studies, 913 metabolites passed QC and were analyzed for association with
~17 million rare and common genetic variants. Genetic variants were genotyped using the
Affymetrix Axiom UK Biobank array and imputed using the UK10K+1000Genomes or the
HRC reference panel. Variants with INFO > 0.3 and MAC > 10 were analyzed. Phenotypes
were log-transformed within each study, and standardized residuals from a linear model
adjusted for study-specific covariates were calculated prior to the genetic analysis. Study-
level genetic analysis was performed using linear mixed models implemented in BOLT-
LMM to account for relatedness within each study, and the study-level association
summaries were meta-analyzed using METAL prior to the lookup of novel BP variants for
association with metabolite levels.

The same methodology for MR analyses as implemented for CVDs was also adopted to test
the effects of metabolites on BP. Causal analyses were restricted to the list of 14 metabolites
that overlapped our BP-associations and were known. We used a Bonferroni significance
threshold (P < 0.05/14 = 0.0036), adjusting for the number of metabolites being tested. We
also tested for a reverse causal effect of BP on metabolite levels. The 1Vs for the BP traits
were the same as those used for MR with CVDs. For the mvMR analysis of metabolites with
BP, we included 3-methylglutarylcarnitine(2) and the three metabolites that shared at least
one IV with 3-methylglutarylcarnitine(2) in the mvMR model. A union set of genetic Vs for
all the metabolites were used in the mvMR model to simultaneously estimate the effect size
of each metabolite on DBP.
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Colocalization of BP associations with eQTLs

Details of kidney-specific eQTL are provided in Supplementary Information. Using the
phenoscanner lookups to prioritize BP regions with eQTLs in GTEX version 7, we
performed joint colocalization analysis with the HyPrColoc package in R3 (https://
github.com/jrs95/hyprcoloc; regional colocalization plots, https://github.com/jrs95/
gassocplot). HyPrColoc approximates the COLOC method developed by Giambartolomei et
al.52 and extends it to allow colocalization analyses to be performed jointly across many
traits simultaneously and pinpoint candidate shared SNV(s). Analyses were restricted to
SNVs present in all the datasets used (for GTEXx data this was 1 Mb upstream and
downstream of the center of the gene probe), data were aligned to the same human genome
build 37 and strand, and a similar prior structure as the colocalization analysis with
cardiometabolic traits was used (P = 0.0001 and y = 0.99).

Gene set enrichment analyses

In total, 4,993 GO biological process, 952 GO molecular function, 678 GO cellular
component, 53 GTEX, 301 KEGG, 9537 MGl, and 2645 Orphanet gene sets were used for
enrichment analyses (Supplementary Information).

We restricted these analyses to the rare BP-associated SNVs (Supplementary Table 4). For
each set of gene sets, the significance of the enrichment of the genetically identified BP
genes was assessed as the Fisher’s exact test for the over-abundance of BP genes in the
designated gene set based on a background of all human protein coding genes or, in the case
of the MGI gene sets, a background of all human protein-coding genes with an available
knock-out phenotype in the MGI database.

Results were deemed significant if after multiple testing correction for the number of gene
sets in the specific set of gene sets the adjusted P-value < 0.05. Results were deemed
suggestive if the adjusted A-value was between 0.05 and 0.1.

Functional enrichment using BP-associated variants

To assess enrichment of GWAS variants associated with the BP traits in regulatory and
functional regions in a wide range of cell and tissue types, we used GWAS Analysis of
Regulatory or Functional Information Enrichment with LD Correction (GARFIELD). The
GARFIELD method has been described extensively elsewhere’®:7_ In brief, GARFIELD
takes a non-parametric approach that requires GWAS summary statistics as input. It
performs the following steps: (i) LD-pruning of input variants; (ii) calculation of the fold
enrichment of various regulatory/functional elements; and (iii) testing these for statistical
significance by permutation testing at various GWAS significance levels, accounting for
MAF, the distance to the nearest transcription start site, and the number of LD proxies of the
GWAS variants. We used the SNVs from the full UKBB GWAS of BP traits as input to
GARFIELD (Supplementary Table 4).
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Extended Data
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Extended Data Fig. 1. Power estimation for stage 2 meta-analyses
Power calculations were performed assuming that, for any given variant, there were

1,318,884 individuals for EAWAS PA analyses, 1,164,961 participants for EAWAS EA
analyses, and 670,472 participants for RV-GWAS analyses. Calculations were performed in
R (https://genome.sph.umich.edu/wiki/Power_Calculations:_Quantitative_Traits).
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Extended Data Fig. 2. Expression of genes implicated by the rare SNVs in GTEX v7 tissues

We used FUMA GWAS to perform these analyses. We included genes closest to the

identified rare variants from the EAWAS and the RV-GWAS.
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Extended Data Fig. 3. Tissue enrichment of rare variant gene expression levels in GTEXx v7

We used FUMA GWAS to perform these analyses. We included genes closest to the
identified rare variants from the EAWAS and the RV-GWAS.
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Figure 1. Study design for single variant discovery.

EUROPEAN ANCESTRY

445,360 PARTICIPANTS FROM
UK BIOBANK

Data request for variants with
P-value < 1 x 107 and outside of known BP regions

445,360 PARTICIPANTS FROM STAGE1
+
225,112 PARTICIPANTS FROM MVP*

TOTAL N=670,472

l

Novel variants with P-value < 5 x 10

23 RARE SNV-BP ASSOCIATIONS
(All variants with Pheterogeneity > 1x10
and direction of effect consistent
between STAGE 1 and MVP)

a, Exome array-wide association study (EAWAS) of SBP, DBP, PP and HTN. In Stage 1, we
performed two fixed effect meta-analyses for each of the blood pressure (BP) phenotypes
SBP, DBP, PP and HTN: one meta-analysis including 810,865 individuals of European
(EUR) ancestry and a second pan-ancestry (PA) meta-analysis including 870,217 individuals
of EUR, South Asians (SAS), East Asians (EAS), African Ancestry (AA), Hispanics (HIS)
and Native Americans (NAm) (Supplementary Tables 23 and 24; Methods). Summary
association statistics for SNVs with < 5 x 108 in Stage 1 that were outside of previously
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reported BP loci (Methods, Supplementary Tables 1 and 25) were requested in independent
studies (up to 448,667 participants; Supplementary Table 24). In Stage 2, we performed both
a EUR and a PA meta-analyses for each trait of Stage 1 results and summary statistics from
the additional studies. Only SNVs that were associated with a BP trait at 7<5 x 10 in the
combined Stage 2 EUR or PA meta-analyses and had concordant directions of effect across
studies (P heterogeneity > 1 % 10-4; Methods) were considered significant. Further details are
provided in the Methods and Supplementary Information. b, Rare variant GWAS (RV-
GWAS) of SBP, DBP and PP. For SNVs outside of the previously reported BP loci
(Methods, Supplementary Tables 1 and 6) with < 1 x 107 in Stage 1, summary association
statistics were requested from MVP (up to 225,112 participants; Supplementary Table 24).
In Stage 2, we performed meta-analyses of Stage 1 and MVP for SBP, DBP and PP in EUR.
SNVs that were associated with a BP trait at <5 x 1078 in the combined Stage 2 EUR with
concordant directions of effect across UKBB and MVP (P heterogeneity >1 % 10-4; Methods)
were considered significant. Justification of the significance thresholds used and further
information on the statistical methods are detailed in the Methods and Supplementary
Information. *Total number of participants analyzed within each study that provided single
variant association summaries following the data request—EAWAS EUR: Million Veterans
Program (MVP: 225,113), deCODE (127,478) and GENOA (1,505); EAWAS PA: Million
Veterans Program (MVP: 225,113 EUR; 63,490 AA; 22,802 HIS; 2,695 Nam; 4,792 EAS),
deCODE (127,478 participants from Iceland) and GENOA (1,505 EUR; 792 AA); RV-
GWAS EUR: Million Veterans Program (MVP: 225,112 EUR).
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Figure 2. New BP associations.

a, Fuji plot of the genome-wide significant BP-associated SNVs from the Stage 2 EAWAS
and Stage 2 rare variant GWAS. The first four circles (from inside-out) and the last circle
(locus annotation) summarize pleiotropic effects, while circles 5 to 8 summarize the
genome-wide significant associations. Every dot or square represents a BP-associated locus,
and large dots represent novel BP-associated loci, while small dots represent loci containing
novel variants identified in this study, which are in linkage disequilibrium with a variant
reported by Evangelou et al.2% and/or Giri et al.21. All loci are independent of each other, but
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due to the scale of the plot, dots for loci in close proximity overlap. *Loci with rare variant
associations. b, Venn diagram showing the overlap of the 107 new BP loci across the
analyzed BP traits. ¢, Functional annotation from VEP of all the identified rare variants in
known and novel regions. d, Plots of minor allele frequency against effect estimate on the
transformed scale for the BP-associated SNVs. Blue squares are new BP-associated SNVSs,
black dots represent SNVs at known loci, and red dots are newly identified distinct BP-
associated SNVs at known loci. Effect estimates and SEs for the novel loci are taken from
the Stage 2 EUR analyses (up to 1,164,961 participants), while for the known are from the
Stage 1 analyses (up to 810,865 participants). Results are from the EAWAS where available
and the GWAS (up to 670,472 participants) if the known variants were not on the exome
array (data from Supplementary Tables 1, 3, 7, 8, and 25 were used).
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Figure 3. Annotation of BP loci.
a, BP associations shared with eQTL from GTEX through multi-trait colocalization analyses.

Expressed gene and the colocalized SNV are provided on the y~axis. BP trait and eQTL
tissues are provided on the x-axis. The color indicates whether the candidate SNV increases
BP and gene expression (brown), decreases BP and gene expression (orange), or has the
inverse effects on BP and gene expression (blue). b, Enrichment of BP-associated SNVs in
DNase | hypersensitivity hot spots (active chromatin). The top plot is for SBP, middle is for
DBP, and bottom represents PP. Height of the bar indicates the fold enrichment in the listed
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tissues, with error bars representing the 95% confidence intervals. The colors represent the
enrichment P-value.
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Figure 4. Phenome-wide associations of the new BP loci.
a, Modified Fuji plot of the genome-wide significant associated SNVs from the Stage 2

EAWAS and Stage 2 rare variant GWAS (novel loci only). Each dot resents a novel locus
where a conditionally independent variant or a variant in LD with the conditionally
independent variant has been previously associated with one or more traits unrelated to
blood pressure, and each circle represents different trait category (Supplementary Table 20).
Locus annotation is plotted in the outer circle, and * sign denotes loci where the
conditionally independent signal maps to a gene which is different to the one closest to the
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sentinel variant. b, Bar chart showing the distribution of traits (x-axis) and number of
distinct BP-associated variants per trait (J~axis) that the SNVs in a are associated with. c,
Bar chart of the number of traits included in b (y~axis) by trait category (x-axis). The color
coding for a and b is relative to c.
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Figure 5. Causal association of BP with stroke and coronary artery disease.
Mendelian randomization analyses of the effect of blood pressure on stroke and coronary

artery disease. a, Univariable analyses. b, Multivariable analyses (Methods). Analyses were
performed using summary association statistics (Methods). The causal estimates are on the
odds ratio (OR) scale (the square in the plot). The whiskers on the plots are the 95%
confidence intervals for these ORs. Results on the standard deviation scale are provided in
Supplementary Table 22. The genetic variants for the estimation of the causal effects in this
plot are sets of SNVs after removing the confounding SNVs and invalid instrumental
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variant. OR, odds ratio (~-value from the inverse variance weighted two sample Mendelian
randomization method). /7, number of disease cases.
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