670 research outputs found
Predicting the Impact of Climate Change on Threatened Species in UK Waters
Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)
Prevalence and predictors of complementary and alternative medicine use among people with coronary heart disease or at risk for this in the sixth Tromsø study: a comparative analysis using protection motivation theory
Background
Engagement in healthy lifestyle behaviors, such as healthy diet and regular physical activity, are known to reduce the risk of developing coronary heart disease (CHD). Complementary and alternative medicine (CAM) is known to be associated with having a healthy lifestyle. The primary aim of this study was to examine the prevalence and predictors of CAM use in CHD patients, and in those without CHD but at risk for developing CHD, using Protection Motivation Theory (PMT) as a guiding conceptual framework.
Method
Questionnaire data were collected from 12,981 adult participants in the cross-sectional sixth Tromsø Study (2007–8). Eligible for analyses were 11,103 participants who reported whether they had used CAM or not. Of those, 830 participants reported to have or have had CHD (CHD group), 4830 reported to have parents, children or siblings with CHD (no CHD but family risk), while 5443 reported no CHD nor family risk of CHD. We first compared the patterns of CAM use in each group, and then examined the PMT predictors of CAM use. Health vulnerability from the threat appraisal process of PMT was assessed by self-rated health and expectations for future health. Response efficacy from the coping appraisal process of PMT was assessed as preventive health beliefs and health behavior frequency.
Results
Use of CAM was most commonly seen in people with no CHD themselves, but family risk of developing CHD (35.8%), compared to people already diagnosed with CHD (30.2%) and people with no CHD nor family risk (32.1%). All four of the PMT factors; self-rated health, expectations for future health, preventive health beliefs, and the health behavior index – were predictors for CAM use in the no CHD but family risk group.
Conclusion
These findings suggest that people use CAM in response to a perceived risk of developing CHD, and to prevent disease and to maintain health
Prenatal ultrasound and postmortem histologic evaluation of tooth germs: an observational, transversal study
Introduction: Hypodontia is the most frequent developmental anomaly of the orofacial complex, and its detection in prenatal ultrasound may indicate the presence of congenital malformations, genetic syndromes and chromosomal abnormalities.To date, only a few studies have evaluated the histological relationship of human tooth germs identified by two-dimensional (2D) ultrasonography. In order to analyze whether two-dimensional ultrasonography of tooth germs may be successfully used for identifying genetic syndromes, prenatal ultrasound images of fetal tooth germs obtained from a Portuguese population sample were compared with histological images obtained from fetal autopsies.Methods: Observational, descriptive, transversal study. The study protocol followed the ethical principles outlined by the Helsinki Declaration and was approved by the Ethics Committee of the School of Dental Medicine, University of Porto (FMDUP, Porto, Portugal) and of the Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/EPE, Porto, Portugal) as well as by the CGC Genetics Embryofetal Pathology Laboratory. Eighty-five fetuses examined by prenatal ultrasound screening from May 2011 to August 2012 had an indication for autopsy following spontaneous fetal death or medical termination of pregnancy. Of the 85 fetuses, 37 (43.5%) were randomly selected for tooth germ evaluation by routine histopathological analysis. Fetuses who were up to 30 weeks of gestation, and whose histological pieces were not representative of all maxillary tooth germs was excluded. Twenty four fetus between the 13th and 30th weeks of gestation fulfilled the parameters to autopsy.Results: Twenty four fetuses were submitted to histological evaluation and were determined the exact number, morphology, and mineralization of their tooth germs. All tooth germs were identifiable with ultrasonography as early as the 13th week of gestation. Of the fetuses autopsied, 41.7% had hypodontia (29.1% maxillary hypodontia and 20.9% mandibular hypodontia).Conclusions: This results indicateinfo:eu-repo/semantics/publishedVersio
Genetic aspects of dental disorders
The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.This paper reviews past and present applications of quantitative and molecular genetics to dental disorders. Examples are given relating to craniofacial development (including malocclusion), oral supporting tissues (including periodontal diseases) and dental hard tissues (including defects of enamel and dentine as well as dental caries). Future developments and applications to clinical dentistry are discussed. Early investigations confirmed genetic bases to dental caries, periodontal diseases and malocclusion, but research findings have had little impact on clinical practice. The complex multifactorial aetiologies of these conditions, together with methodological problems, have limited progress until recently. Present studies are clarifying previously unrecognized genetic and phenotypic heterogeneities and attempting to unravel the complex interactions between genes and environment by applying new statistical modelling approaches to twin and family data. linkage studies using highly polymorphic DNA markers are providing a means of locating candidate genes, including quantitative trait loci (QTL). In future, as knowledge increases: it should be possible to implement preventive strategies for those genetically-predisposed individuals who are identified-predisposed individuals who are identified to be at risk.Grant C. Townsend, Michael J. Aldred and P. Mark Bartol
P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation
Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.J.F.M. and J.G.R. were supported by a PhD grant from Fundacao para a Ciencia e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciencia 2008 fellows. The authors would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains Helminth Chronicity.
Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity
Variability and patterning in permanent tooth size of four human ethnic groups
AimsDental dimensions vary between different ethnic groups, providing insights into the factors controlling human dental development. This paper compares permanent mesiodistal crown diameters between four ethnic groups highlighting patterns of tooth size between these groups and considers the findings in relation to genetic and environmental influences.Methods and resultsMesiodistal crown dimensions were recorded using standardised manual measurements on dental casts derived from four different human populations: Southern Chinese, North Americans of European ancestry, Modern British of European ancestry and Romano-British. Analyses based on double determinations showed that measurements in all study samples were reliable to an accuracy of 0.1mm. The Southern Chinese sample was found to have the largest teeth overall, whereas the Romano-British sample generally displayed the smallest mesiodistal crown dimensions (pConclusionThe different patterns of tooth size observed between the study samples are thought to reflect differences in the relative contributions of genetic, and environmental influences to dental development between the four populations. For example, it is proposed that major environmental insults during the early life of Romano-Britons, including recurrent illnesses, poor nutrition and excessive lead ingestion, contributed to the reduction in size and greater variability of their later-forming teeth. Using a standardised methodology, significant differences in mesiodistal crown diameters have been demonstrated between four human ethnic groups. There were also distinct differences in the patterns of crown size between the groups, with the later-forming teeth in each type generally showing greater size variation.A.H. Brook, R.C. Griffin, G. Townsend, Y. Levisianos, J. Russell, R.N. Smit
General and craniofacial development are complex adaptive processes influenced by diversity
Complex systems are present in such diverse areas as social systems, economies, ecosystems and Biology and, therefore, are highly relevant to dental research, education and practice. AComplex Adaptive System in biological development is a dynamicprocess in which, from interacting Components at a lowerlevel, higher level phenomena and structures emerge. Diversity makes Substantial contributions to the performance of Complex Adaptive Systems. It enhances the Robustness of the process, allowing multiple responses to external stimuli as well as internal changes. From Diversity comes variation in outcome and the possibility of major change; outliers in the distributionenhance the tipping points. The development of the dentition is a valuable, accessible model with extensive and reliable databases for investigating the role of Complex Adaptive Systems in craniofacial and general development. The general characteristics of such systems are seen during tooth development: self-organisation; bottom-up emergence; multitasking; self-adaptation; variation; tipping points; Critical phases; and robustness. Dental findings are compatible with the Random Network Model, the Threshold Model and also with the Scale Free Network Model which has a Power Law distribution. In addition, dental development shows the characteristics of Modularity and Clustering to form Hierarchical Networks. The interactions between the genes (nodes) demonstrate Small World phenomena, Subgraph Motifs and Gene Regulatory Networks. Genetic mechanisms are involved in the creation and evolution of variation during development. The genetic factors interact with epigenetic and environmental factors at the molecular level and form complex networks within the cells. From these interactions emerge the higher level tissues, tooth germs and mineralised teeth. Approaching development in this way allows investigation of why there can be variations in phenotypes from identical genotypes; the phenotype is the outcome of perturbations in the cellular systems and networks, as well as of the genotype. Understandingand applying complexity theorywill bring aboutsubstantial advances not only in dental research and education but also in the organisation and delivery of oral health care
Effects of Post-Translational Modifications of Fibrinogen on Clot Formation, Clot Structure, and Fibrinolysis: A Systematic Review
OBJECTIVE: Post-translational modifications of fibrinogen influence the occurrence and progression of thrombotic diseases. In this systematic review, we assessed the current literature on post-translational modifications of fibrinogen and their effects on fibrin formation and clot characteristics. Approach and Results: A systematic search of Medline, Embase, Cochrane Library, and Web of Science was performed to find studies reporting post-translational modifications of fibrinogen and the effects on clot formation and structure. Both in vitro studies and ex vivo studies using patient material were included. One hundred five articles were included, describing 11 different modifications of fibrinogen. For the best known and studied modifications, conclusions could be drawn about their effect on clot formation and structure. Oxidation, high levels of nitration, and glycosylation inhibit the rate of polymerization, resulting in dense clots with thinner fibers, while low levels of nitration increase the rate of polymerization. Glycation showed different results for polymerization, but f
An integrated MR/PET system: prospective applications
Radiology is strongly depending on medical imaging technology and consequently directing technological progress. A novel technology can only be established, however, if improved diagnostic accuracy influence on therapeutic management and/or overall reduced cost can be evidenced. It has been demonstrated recently that Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) can technologically be integrated into one single hybrid system. Some scientific arguments on the benefits are obvious, e.g., that simultaneous imaging of morphological and functional information will improve tissue characterization. However, crossfire of questions still remains: What unmet radiological needs are addressed by the novel system? What level of hardware integration is reasonable, or would software-based image co-registration be sufficient? Will MR/PET achieve higher diagnostic accuracy compared to separate imaging? What is the added value compared to other hybrid imaging modalities like PET/CT? And finally, is the system economically reasonable and has the potential to reduce overall costs for therapy planning and monitoring? This article tries to highlight some perspectives of applying an integrated MR/PET system for simultaneous morphologic and functional imaging
- …
