210 research outputs found
Activation of the GLP-1 Receptor Signalling Pathway: A Relevant Strategy to Repair a Deficient Beta-Cell Mass
Recent preclinical studies in rodent models of diabetes suggest that exogenous GLP-1R agonists and DPP-4 inhibitors have the ability to increase islet mass and preserve beta-cell function, by immediate reactivation of beta-cell glucose competence, as well as enhanced beta-cell proliferation and neogenesis and promotion of beta-cell survival. These effects have tremendous implication in the treatment of T2D because they directly address one of the basic defects in T2D, that is, beta-cell failure. In human diabetes, however, evidence that the GLP-1-based drugs alter the course of beta-cell function remains to be found. Several questions surrounding the risks and benefits of GLP-1-based therapy for the diabetic beta-cell mass are discussed in this review and require further investigation
Review: Pancreatic β-Cell Neogenesis Revisited
β-cell neogenesis triggers the generation of new β-cells
from precursor cells. Neogenesis from duct epithelium is the
most currently described and the best documented process
of differentiation of precursor cells into β-cells. It is contributes
not only to β-cell mass expansion during fetal and
nonatal life but it is also involved in the maintenance of the
β-cell mass in adults. It is also required for the increase in
β-cell mass in situations of increase insulin demand (obesity,
pregnancy). A large number of factors controlling the differentiation
of β-cells has been identified. They are classified
into the following main categories: growth factors, cytokine
and inflamatory factors, and hormones such as PTHrP and
GLP-1. The fact that intestinal incretin hormone GLP-1
exerts a major trophic role on pancreatic β-cells provides
insights into the possibility to pharmacologically stimulate
β-cell neogenesis. This could have important implications
for the of treatment of type 1 and type 2 diabetes. Transdifferentiation,
that is, the differentiation of already differentiated
cells into β-cells, remains controversial.However, more
and more studies support this concept. The cells, which can
potentially “transdifferentiate” into β-cells, can belong to
the pancreas (acinar cells) and even islets, or originate from
extra-pancreatic tissues such as the liver. Neogenesis from intra-islet precursors also have been proposed and subpopulations
of cell precursors inside islets have been described
by some authors. Nestin positive cells, which have been considered
as the main candidates, appear rather as progenitors
of endothelial cells rather than β-cells and contribute to
angiogenesis rather than neogenesis. To take advantage of
the different differentiation processes may be a direction for
future cellular therapies. Ultimately, a better understanding
of the molecular mechanisms involved in β-cell neogenesis
will allow us to use any type of differentiated and/or undifferentiated
cells as a source of potential cell precursors
The Constitutive Lack of α7 Nicotinic Receptor Leads to Metabolic Disorders in Mouse.
Type 2 diabetes (T2D) occurs by deterioration in pancreatic β-cell function and/or progressive loss of pancreatic β-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis.
We used an α7 nAChR knock-out (α7 <sup>-/-</sup> ) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments.
Young α7 <sup>-/-</sup> mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in β-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7 <sup>-/-</sup> mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake.
Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D
Real-Time Data-Driven Approach for Prediction and Correction of Electrode Array Trajectory in Cochlear Implantation
Cochlear implants provide hearing perception to people with severe to profound hearing loss. The electrode array (EA) inserted during the surgery directly stimulates the hearing nerve, bypassing the acoustic hearing system. The complications during the EA insertion in the inner ear may cause trauma leading to infection, residual hearing loss, and poor speech perception. This work aims to reduce the trauma induced during electrode array insertion process by carefully designing a sensing method, an actuation system, and data-driven control strategy to guide electrode array in scala tympani. Due to limited intra-operative feedback during the insertion process, complex bipolar electrical impedance is used as a sensing element to guide EA in real time. An automated actuation system with three degrees of freedom was used along with a complex impedance meter to record impedance of consecutive electrodes. Prediction of EA direction (medial, middle, and lateral) was carried out by an ensemble of random forest, shallow neural network, and k-nearest neighbour in an offline setting with an accuracy of 86.86%. The trained ensemble was then utilized in vitro for prediction and correction of EA direction in real time in the straight path with an accuracy of 80%. Such a real-time system also has application in other electrode implants and needle and catheter insertion guidance.Royal National Institute for Deaf people (RNID), formerly known as AoH
Beneficial Effects of Remifentanil Against Excitotoxic Brain Damage in Newborn Mice
Background: Remifentanil, a synthetic opioid used for analgesia during cesarean sections, has been shown in ex vivo experiments to exert anti-apoptotic activity on immature mice brains. The present study aimed to characterize the impact of remifentanil on brain lesions using an in vivo model of excitotoxic neonatal brain injury.Methods: Postnatal day 2 (P2) mice received three intraperitoneal injections of remifentanil (500 ng/g over a 10-min period) or saline just before an intracortical injection of ibotenate (10 μg). Cerebral reactive oxygen species (ROS) production, cell death, in situ labeling of cortical caspase activity, astrogliosis, inflammation mediators, and lesion size were determined at various time points after ibotenate injection. Finally, behavioral tests were performed until P18.Results: In the injured neonatal brain, remifentanil significantly decreased ROS production, cortical caspase activity, DNA fragmentation, interleukin-1β levels, and reactive astrogliosis. At P7, the sizes of the ibotenate-induced lesions were significantly reduced by remifentanil treatment. Performance on negative geotaxis (P6-8) and grasping reflex (P10-12) tests was improved in the remifentanil group. At P18, a sex specificity was noticed; remifentanil-treated females spent more time in the open field center than did the controls, suggesting less anxiety in young female mice.Conclusions:In vivo exposure to remifentanil exerts a beneficial effect against excitotoxicity on the developing mouse brain, which is associated with a reduction in the size of ibotenate-induced brain lesion as well as prevention of some behavioral deficits in young mice. The long-term effect of neonatal exposure to remifentanil should be investigated
Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion
OBJECTIVE—Insulin secretion involves complex events in which the mitochondria play a pivotal role in the generation of signals that couple glucose detection to insulin secretion. Studies on the mitochondrial generation of reactive oxygen species (ROS) generally focus on chronic nutrient exposure. Here, we investigate whether transient mitochondrial ROS production linked to glucose-induced increased respiration might act as a signal for monitoring insulin secretion
COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways
Background: The control of the functional pancreatic beta-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how beta-cell mass is determined
Incretin-based therapies
Incretin-based therapies have established a foothold in the diabetes armamentarium through the introduction of oral dipeptidyl peptidase-4 inhibitors and the injectable class, the glucagon-like peptide-1 receptor agonists. In 2009, the American Diabetes Association and European Association for the Study of Diabetes authored a revised consensus algorithm for the initiation and adjustment of therapy in Type 2 diabetes (T2D). The revised algorithm accounts for the entry of incretin-based therapies into common clinical practice, especially where control of body weight and hypoglycemia are concerns. The gut-borne incretin hormones have powerful effects on glucose homeostasis, particularly in the postprandial period, when approximately two-thirds of the β-cell response to a given meal is due to the incretin effect. There is also evidence that the incretin effect is attenuated in patients with T2D, whereby the β-cell becomes less responsive to incretin signals. The foundation of incretin-based therapies is to target this previously unrecognized feature of diabetes pathophysiology, resulting in sustained improvements in glycemic control and improved body weight control. In addition, emerging evidence suggests that incretin-based therapies may have a positive impact on inflammation, cardiovascular and hepatic health, sleep, and the central nervous system. In the present article, we discuss the attributes of current and near-future incretin-based therapies
- …