210 research outputs found

    Activation of the GLP-1 Receptor Signalling Pathway: A Relevant Strategy to Repair a Deficient Beta-Cell Mass

    Get PDF
    Recent preclinical studies in rodent models of diabetes suggest that exogenous GLP-1R agonists and DPP-4 inhibitors have the ability to increase islet mass and preserve beta-cell function, by immediate reactivation of beta-cell glucose competence, as well as enhanced beta-cell proliferation and neogenesis and promotion of beta-cell survival. These effects have tremendous implication in the treatment of T2D because they directly address one of the basic defects in T2D, that is, beta-cell failure. In human diabetes, however, evidence that the GLP-1-based drugs alter the course of beta-cell function remains to be found. Several questions surrounding the risks and benefits of GLP-1-based therapy for the diabetic beta-cell mass are discussed in this review and require further investigation

    Convenance et résistance: Enjeux contextuels d'une antonymie

    Get PDF

    Review: Pancreatic β-Cell Neogenesis Revisited

    Get PDF
    β-cell neogenesis triggers the generation of new β-cells from precursor cells. Neogenesis from duct epithelium is the most currently described and the best documented process of differentiation of precursor cells into β-cells. It is contributes not only to β-cell mass expansion during fetal and nonatal life but it is also involved in the maintenance of the β-cell mass in adults. It is also required for the increase in β-cell mass in situations of increase insulin demand (obesity, pregnancy). A large number of factors controlling the differentiation of β-cells has been identified. They are classified into the following main categories: growth factors, cytokine and inflamatory factors, and hormones such as PTHrP and GLP-1. The fact that intestinal incretin hormone GLP-1 exerts a major trophic role on pancreatic β-cells provides insights into the possibility to pharmacologically stimulate β-cell neogenesis. This could have important implications for the of treatment of type 1 and type 2 diabetes. Transdifferentiation, that is, the differentiation of already differentiated cells into β-cells, remains controversial.However, more and more studies support this concept. The cells, which can potentially “transdifferentiate” into β-cells, can belong to the pancreas (acinar cells) and even islets, or originate from extra-pancreatic tissues such as the liver. Neogenesis from intra-islet precursors also have been proposed and subpopulations of cell precursors inside islets have been described by some authors. Nestin positive cells, which have been considered as the main candidates, appear rather as progenitors of endothelial cells rather than β-cells and contribute to angiogenesis rather than neogenesis. To take advantage of the different differentiation processes may be a direction for future cellular therapies. Ultimately, a better understanding of the molecular mechanisms involved in β-cell neogenesis will allow us to use any type of differentiated and/or undifferentiated cells as a source of potential cell precursors

    The Constitutive Lack of α7 Nicotinic Receptor Leads to Metabolic Disorders in Mouse.

    Get PDF
    Type 2 diabetes (T2D) occurs by deterioration in pancreatic β-cell function and/or progressive loss of pancreatic β-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis. We used an α7 nAChR knock-out (α7 <sup>-/-</sup> ) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments. Young α7 <sup>-/-</sup> mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in β-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7 <sup>-/-</sup> mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake. Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D

    Real-Time Data-Driven Approach for Prediction and Correction of Electrode Array Trajectory in Cochlear Implantation

    Get PDF
    Cochlear implants provide hearing perception to people with severe to profound hearing loss. The electrode array (EA) inserted during the surgery directly stimulates the hearing nerve, bypassing the acoustic hearing system. The complications during the EA insertion in the inner ear may cause trauma leading to infection, residual hearing loss, and poor speech perception. This work aims to reduce the trauma induced during electrode array insertion process by carefully designing a sensing method, an actuation system, and data-driven control strategy to guide electrode array in scala tympani. Due to limited intra-operative feedback during the insertion process, complex bipolar electrical impedance is used as a sensing element to guide EA in real time. An automated actuation system with three degrees of freedom was used along with a complex impedance meter to record impedance of consecutive electrodes. Prediction of EA direction (medial, middle, and lateral) was carried out by an ensemble of random forest, shallow neural network, and k-nearest neighbour in an offline setting with an accuracy of 86.86%. The trained ensemble was then utilized in vitro for prediction and correction of EA direction in real time in the straight path with an accuracy of 80%. Such a real-time system also has application in other electrode implants and needle and catheter insertion guidance.Royal National Institute for Deaf people (RNID), formerly known as AoH

    Beneficial Effects of Remifentanil Against Excitotoxic Brain Damage in Newborn Mice

    Get PDF
    Background: Remifentanil, a synthetic opioid used for analgesia during cesarean sections, has been shown in ex vivo experiments to exert anti-apoptotic activity on immature mice brains. The present study aimed to characterize the impact of remifentanil on brain lesions using an in vivo model of excitotoxic neonatal brain injury.Methods: Postnatal day 2 (P2) mice received three intraperitoneal injections of remifentanil (500 ng/g over a 10-min period) or saline just before an intracortical injection of ibotenate (10 μg). Cerebral reactive oxygen species (ROS) production, cell death, in situ labeling of cortical caspase activity, astrogliosis, inflammation mediators, and lesion size were determined at various time points after ibotenate injection. Finally, behavioral tests were performed until P18.Results: In the injured neonatal brain, remifentanil significantly decreased ROS production, cortical caspase activity, DNA fragmentation, interleukin-1β levels, and reactive astrogliosis. At P7, the sizes of the ibotenate-induced lesions were significantly reduced by remifentanil treatment. Performance on negative geotaxis (P6-8) and grasping reflex (P10-12) tests was improved in the remifentanil group. At P18, a sex specificity was noticed; remifentanil-treated females spent more time in the open field center than did the controls, suggesting less anxiety in young female mice.Conclusions:In vivo exposure to remifentanil exerts a beneficial effect against excitotoxicity on the developing mouse brain, which is associated with a reduction in the size of ibotenate-induced brain lesion as well as prevention of some behavioral deficits in young mice. The long-term effect of neonatal exposure to remifentanil should be investigated

    Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion

    Get PDF
    OBJECTIVE—Insulin secretion involves complex events in which the mitochondria play a pivotal role in the generation of signals that couple glucose detection to insulin secretion. Studies on the mitochondrial generation of reactive oxygen species (ROS) generally focus on chronic nutrient exposure. Here, we investigate whether transient mitochondrial ROS production linked to glucose-induced increased respiration might act as a signal for monitoring insulin secretion

    Incretin-based therapies

    Get PDF
    Incretin-based therapies have established a foothold in the diabetes armamentarium through the introduction of oral dipeptidyl peptidase-4 inhibitors and the injectable class, the glucagon-like peptide-1 receptor agonists. In 2009, the American Diabetes Association and European Association for the Study of Diabetes authored a revised consensus algorithm for the initiation and adjustment of therapy in Type 2 diabetes (T2D). The revised algorithm accounts for the entry of incretin-based therapies into common clinical practice, especially where control of body weight and hypoglycemia are concerns. The gut-borne incretin hormones have powerful effects on glucose homeostasis, particularly in the postprandial period, when approximately two-thirds of the β-cell response to a given meal is due to the incretin effect. There is also evidence that the incretin effect is attenuated in patients with T2D, whereby the β-cell becomes less responsive to incretin signals. The foundation of incretin-based therapies is to target this previously unrecognized feature of diabetes pathophysiology, resulting in sustained improvements in glycemic control and improved body weight control. In addition, emerging evidence suggests that incretin-based therapies may have a positive impact on inflammation, cardiovascular and hepatic health, sleep, and the central nervous system. In the present article, we discuss the attributes of current and near-future incretin-based therapies
    corecore