59 research outputs found
Ase1/Prc1-dependent spindle elongation corrects merotely during anaphase in fission yeast
The tug of war that ensues when a kinetochore binds microtubules from both spindle poles is resolved by Ase1/Prc1
Modification of a commercial dna extraction kit to simultaneously recover rna, safely and rapidly, and to assess molecular biomass of the total and the active part of microbial communities, from soils with diverse mineralogy and carbon content : S11.04-P -15
We have modified a commercial DNA extraction kit for soil to simultaneously co-extract RNA. In this new procedure RNA and DNA are separated by two selective purifications in cascade without the need of DNAase or RNAse digestion. Consequently DNA and RNA are respectively purified from the whole co-extraction solution. Nucleic acids extraction is based on the action of SDS coupled with an efficient bead-beating step, but it does not require any solvent. Avoiding the use of solvents, which are damaging for human health and environmental quality, was one of our most important motivations to develop this protocol. In a second time, we have optimized this protocol to improve the DNA and RNA yield, but kipping those yields below the saturation limit of the kit to assess and quantify the variations of molecular biomass of the total (DNA) and the active (RNA) part of microbial communities in natural samples. We have also introduced a first step of homogenization of soil sample in liquid nitrogen to improve the reliability of the fungal 18S gene sequence quantification. Finally, we have shown that this protocol can be applied to a wide diversity of soils whatever their mineralogy and metal content (2 Ferralsols, 1 Vertisol, 2 Andosols from Madagascar), texture or biomass content (1 poor sandy soil from Congo and one carbon rich temperate soil sample submitted or not to a 1 month cold stress). * E Tournier, L. Amenc and AL. Pablo contributed equally to this study. (Texte intégral
Tip1/CLIP-170 Protein Is Required for Correct Chromosome Poleward Movement in Fission Yeast
The plus-end microtubule binding proteins (+TIPs) play an important role in the regulation of microtubule stability and cell polarity during interphase. In S. pombe, the CLIP-170 like protein Tip1, together with the kinesin Tea2, moves along the microtubules towards their plus ends. Tip1 also requires the EB1 homolog Mal3 to localize to the microtubule tips. Given the requirement for Tip1 for microtubule stability, we have investigated its role during spindle morphogenesis and chromosome movement. Loss of Tip1 affects metaphase plate formation and leads to the activation of the spindle assembly checkpoint. In the absence of Tip1 we also observed the appearance of lagging chromosomes, which do not influence the normal rate of spindle elongation. Our results suggest that S. pombe Tip1/CLIP170 is directly or indirectly required for correct chromosome poleward movement independently of Mal3/EB1
Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance
Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual
Aurora B kinase controls the separation of centromeric and telomeric heterochromatin
International audienc
The fission yeast spindle orientation checkpoint: a model that generates tension?
International audienceIn all eukaryotes, the alignment of the mitotic spindle with the axis of cell polarity is essential for accurate chromosome segregation as well as for the establishment of cell fate, and thus morphogenesis, during development. Studies in invertebrates, higher eukaryotes and yeast suggest that astral microtubules interact with the cell cortex to position the spindle. These microtubules are thought to impose pushing or pulling forces on the spindle poles to affect the rotation or movement of the spindle. In the fission yeast model, where cell division is symmetrical, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. In these cells, a bub1-dependent mitotic checkpoint, the spindle orientation checkpoint (SOC), is activated when the spindles fail to align with the cell polarity axis. In this paper we review the mechanism that orientates the spindle during mitosis in fission yeast, and discuss the consequences of misorientation on metaphase progression
AuroraB prevents chromosome arm separation defects by promoting telomere dispersion and disjunction.
C. Reyes and C. Serrurier contributed equally to this paper.International audienceThe segregation of centromeres and telomeres at mitosis is coordinated at multiple levels to prevent the formation of aneuploid cells, a phenotype frequently observed in cancer. Mitotic instability arises from chromosome segregation defects, giving rise to chromatin bridges at anaphase. Most of these defects are corrected before anaphase onset by a mechanism involving Aurora B kinase, a key regulator of mitosis in a wide range of organisms. Here, we describe a new role for Aurora B in telomere dispersion and disjunction during fission yeast mitosis. Telomere dispersion initiates in metaphase, whereas disjunction takes place in anaphase. Dispersion is promoted by the dissociation of Swi6/HP1 and cohesin Rad21 from telomeres, whereas disjunction occurs at anaphase after the phosphorylation of condensin subunit Cnd2. Strikingly, we demonstrate that deletion of Ccq1, a telomeric shelterin component, rescued cell death after Aurora inhibition by promoting the loading of condensin on chromosome arms. Our findings reveal an essential role for telomeres in chromosome arm segregation
Contribution to the understanding of consumers' creaminess concept: A sensory and a verbal approach
International audienceCreaminess is an integrated term, which is reported to depend on textural properties, fattiness, flavour and pleasantness of food products. We aimed to determine whether consumers weight these attributes similarly or not when assessing creamy products. To determine this, sensory properties of 12 dairy products were characterized by a trained panel. Then, new consumers rated the creaminess and their liking for these products, and wrote down their own definition of creaminess. A cluster analysis done on the consumers’ creaminess scores revealed three clusters, which were characterized through correlation with trained panel data, liking data and definition data. For all clusters, consumers used words related to texture and pleasantness when defining creaminess. Nevertheless, from verbal and sensory data, product properties underlying creaminess construct vary among clusters. While a first cluster put emphasis on texture, a second one put emphasis on fattiness and natural flavour, and a last put emphasis on sweetness
Mechanism controlling perpendicular alignment of the spindle to the axis of cell division in fission yeast
In animal cells, the mitotic spindle is aligned perpendicular to the axis of cell division. This ensures that sister chromatids are separated to opposite sides of the cytokinetic actomyosin ring (CAR). We show that, in fission yeast, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. Interaction initially occurs with a region surrounding the nucleus, which we term the astral microtubule interaction zone (AMIZ). Simultaneous contact of astral microtubules from both poles with the AMIZ directs spindle rotation and this requires both actin and two type V myosins, Myo51 and Myo52. Astral microtubules from one pole only then contact the CAR, which is located at the centre of the AMIZ. We demonstrate that the anillin homologue Mid1, which dictates correct placement of the CAR, is necessary to stabilise the mitotic spindle perpendicular to the axis of cell division. Finally, we show that the position of the mitotic spindle is monitored by a checkpoint that regulates the timing of sister chromatid separation
- …