20 research outputs found

    Patterns of Plant Biomass Partitioning Depend on Nitrogen Source

    Get PDF
    Nitrogen (N) availability is a strong determinant of plant biomass partitioning, but the role of different N sources in this process is unknown. Plants inhabiting low productivity ecosystems typically partition a large share of total biomass to belowground structures. In these systems, organic N may often dominate plant available N. With increasing productivity, plant biomass partitioning shifts to aboveground structures, along with a shift in available N to inorganic forms of N. We tested the hypothesis that the form of N taken up by plants is an important determinant of plant biomass partitioning by cultivating Arabidopsis thaliana on different N source mixtures. Plants grown on different N mixtures were similar in size, but those supplied with organic N displayed a significantly greater root fraction. 15N labelling suggested that, in this case, a larger share of absorbed organic N was retained in roots and split-root experiments suggested this may depend on a direct incorporation of absorbed amino acid N into roots. These results suggest the form of N acquired affects plant biomass partitioning and adds new information on the interaction between N and biomass partitioning in plants

    Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests

    Get PDF
    The supply of nitrogen commonly limits plant production in boreal forests and also affects species composition and ecosystem functions other than plant growth. These interrelations vary across the landscapes, with the highest N availability, plant growth and plant species richness in ground-water discharge areas (GDAs), typically in toe-slope positions, which receive solutes leaching from the much larger groundwater recharge areas (GRAs) uphill. Plant N sources include not only inorganic N, but, as heightened more recently, also organic N species. In general, also the ratio inorganic N over organic N sources increase down hillslopes. Here, we review recent evidence about the nature of the N limitation and its variations in Fennoscandian boreal forests and discuss its implications for forest ecology and management. The rate of litter decomposition has traditionally been seen as the determinant of the rate of N supply. However, while N-rich litter decomposes faster than N-poor litter initially, N-rich litter then decomposes more slowly, which means that the relation between N % of litter and its decomposability is complex. Moreover, in the lower part of the mor-layer, where the most superficial mycorrhizal roots first appear, and N availability matters for plants, the ratio of microbial N over total soil N is remarkably constant over the wide range in litter and soil C/N ratios of between 15 and 40 for N-rich and N-poor sites, respectively. Nitrogen-rich and -poor sites thus differ in the sizes of the total N pool and the microbial N pool, but not in the ratio between them. A more important difference is that the soil microbial N pool turns over faster in N-rich systems because the microbes are more limited by C, while microbes in N-poor systems are a stronger sink for available N. Furthermore, litter decomposition in the most superficial soil horizon (as studied by the so-called litter-bag method) is associated with a dominance of saprotrophic fungi, and absence of mycorrhizal fungi. The focal zone in the context of plant N supply in N-limited forests is further down the soil profile, where ectomycorrhizal (ECM) roots become abundant. Molecular evidence and stable isotope data indicate that in the typical N-poor boreal forests, nitrogen is retained in saprotrophic fungi, likely until they run out of energy (available C-compounds). Then, as heightened by recent research, ECM fungi, which are supplied by photosynthate from the trees, become the superior competitors for N. In N-poor boreal soils strong N retention by microorganisms keeps levels of available N very low. This is exacerbated by an increase in tree C allocation to mycorrhizal fungi (TCAM) relative to net primary production (NPP) with decreasing soil N supply, which causes ECM fungi to retain much of the available soil N for their own growth and transfer little to their tree hosts. The transfer of N through the ECM fungi, and not the rate of litter decomposition, is likely limiting the rate of tree N supply under such conditions. All but a few stress-tolerant less N-demanding plant species, like the ECM trees themselves and ericaceous dwarf shrubs, are excluded. With increasing N supply, a weakening of ECM symbiosis caused by the relative decline in TCAM contributes to shifts in soil microbial community composition from fungal dominance to bacterial dominance. Thus, bacteria, which are less C-demanding, but more likely to release N than fungi, take over. This, and the relatively high pH in GDA, allow autotrophic nitrifying bacteria to compete successfully for the NH4+ released by C-limited organisms and causes the N cycle to open up with leaching of nitrate (NO3−) and gaseous N losses through denitrification. These N-rich conditions allow species-rich communities of N-demanding plant species. Meanwhile, ECM fungi have a smaller biomass, are supplied with N in excess of their demand and will export more N to their host trees. Hence, the gradient from low to high N supply is characterized by profound variations in plant and soil microbial physiologies, especially their relations to the C-to-N supply ratio. We propose how interactions among functional groups can be understood and modelled (the plant-microbe carbon-nitrogen model). With regard to forest management these perspectives explain why the creation of larger tree-free gaps favors the regeneration of tree seedlings under N-limited conditions through reduced belowground competition for N, and why such gaps are less important under high N supply (but when light might be limiting). We also discuss perspectives on the relations between N supply, biodiversity, and eutrophication of boreal forests from N deposition or forest fertilization

    Split-root experiment with <i>Arabidopsis thaliana</i>.

    No full text
    <p>Plants were grown on agar plates that were divided into two identical compartments by a plastic rib. The growth medium was identical on both sides of the rib and with N supplied as a mixture of 1.5 mM glutamine+3 mM NO<sub>3</sub><sup>−</sup> but on one side, one of the N sources (either glutamine or NO<sub>3</sub><sup>−</sup>) was <sup>15</sup>N-labelled. Bars indicate the fraction of N derived from each source and represent average ± SE, n = 6–7. Different lower-case and capital letters indicate differences at p≀0.05 between plants parts and between N sources, respectively.</p

    Origin of root N, shoot N and plant N, in <i>Arabidopsis thaliana</i> plants grown on 3 mM NH<sub>4</sub>NO<sub>3</sub> (a) or a mixture of 1.5 mM glutamine+3 mM NO<sub>3</sub><sup>−</sup> (b).

    No full text
    <p>Fractions of N derived from individual N sources in the mixtures were calculated from N contents and rates of <sup>15</sup>N abundance in plant parts. Plants were grown on sterile agar plates for 21 days. Bars represent average values ± SE, n = 5. Different lower-case and capital letters indicate differences at p≀0.05 between plant parts and between N sources, respectively.</p

    Split-root experiment with <i>Arabidopsis thaliana</i>.

    No full text
    <p>Plants were grown on agar plates that were divided into two identical compartments by a plastic rib. The two compartments contained either 1.5 mM glutamine or 3 mM NO<sub>3</sub><sup>−</sup> as N sources. For each plate, one of the N sources (either glutamine or NO<sub>3</sub><sup>−</sup>) was <sup>15</sup>N-labelled. Bars indicate the fraction of N derived from each source for the shoot and for roots growing in the NO<sub>3</sub><sup>−</sup> compartment and the glutamine compartment. Bars represent average ± SE, n = 5. Different lower-case and capital letters indicate differences at p≀0.05 between plant parts, and between N sources, respectively.</p
    corecore