10 research outputs found

    Shared Fate of Meningeal Mast Cells and Sensory Neurons in Migraine

    Get PDF
    Migraine is a primary headache disorder which has complex neurogenic pathophysiological mechanisms still requiring full elucidation. The sensory nerves and meningeal mast cell couplings in the migraine target tissue are very effective interfaces between the central nervous system and the immune system. These couplings fall into three categories: intimacy, cross-talk and a shared fate. Acting as the immediate call-center of the neuroimmune system, mast cells play fundamental roles in migraine pathophysiology. Considerable evidence shows that neuroinflammation in the meninges is the key element resulting in the sensitization of trigeminal nociceptors. The successive events such as neuropeptide release, vasodilation, plasma protein extravasation, and mast cell degranulation that form the basic characteristics of the inflammation are believed to occur in this persistent pain state. In this regard, mast cells and sensory neurons represent both the target and source of the neuropeptides that play autocrine, paracrine, and neuro-endocrine roles during this inflammatory process. This review intends to contribute to a better understanding of the meningeal mast cell and sensory neuron bi-directional interactions from molecular, cellular, functional points of view. Considering the fact that mast cells play a sine qua non role in expanding the opportunities for targeted new migraine therapies, it is of crucial importance to explore these multi-faceted interactions

    The Mediating Effect of Depression on the Relationship between Marital Satisfaction and Quality of Life in Women

    Get PDF
    The Mediating Effect of Depression on the Relationship between Marital Satisfaction and Quality of Life in Wome

    Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges

    Get PDF
    Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine.Peer reviewe

    Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges

    Get PDF
    Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2â€Č,3â€Č-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine

    The effect of kisspeptin on spermatogenesis and apoptosis in rats

    No full text
    Background/aim: To study the effect of kisspeptin, a gonadotropin release stimulator, on the testicular tissue of the rat. Materials and methods: Four groups were formed as follows: control, Kiss-10 50 nmol administration for 1 day, Kiss-10 administration for 13 days, and one last group kept for 7 days following Kiss-10 applied for 13 days. Testicular tissues were stained with hematoxylineosin, periodic acid Schiff, Masson trichrome staining, terminal deoxynucleotidyl transferased UTP nick-end labeling, and Ki-67 immune staining. Serum testosterone levels were determined. Results: Serum testosterone level increased following acute application, while it was reduced by chronic treatment. Spermatogenic cells as stained by Ki-67 and TUNEL increased in the treated groups compared to the controls. Following a 7-day rest after treatment, a decrease in testosterone levels and Ki-67-stained cell numbers and an increase in TUNEL-stained cells were observed. Leydig cells showed increased vacuolization in the Kiss-1 group. Leydig cell vacuolization continued in the Kiss (13) group and was reduced in the Kiss (13 + 7) group. Conclusion: Kiss-10 increased spermatogenic cell proliferation, while testosterone level and proliferation decreased and apoptosis increased during the waiting period

    Trimetazidine Increases Cell Survival And Inhibits The Activation Of Inflammatory Response In Sodium Taurocholate-Induced Acute Pancreatitis

    No full text
    Objective: To evaluate the therapeutic effects of trimetazidine (TMZ) in an experimental acute pancreatitis (AP) model induced with sodium taurocholate (STC). Summary of Background Data: At present, AP is considered a disease with no specific treatment. Preventing mitochondrial dysfunction in acinar cells may be an option for specific treatment of AP. TMZ is an anti-ischemic drug with anti-inflammatory, antioxidant, and mitochondrial modulatory effects. Methods: Rats were divided into 4 groups. AP was induced in the AP (n = 7) and AP + TMZ (n = 7) groups by an injection of 4% sodium taurocholate to the pancreatic duct. The sham (n = 6) and drug (n = 6) groups were designated as control groups. The AP + TMZ and drug groups were administered TMZ. Samples were taken at 72 hours, and histopathologic changes as well as biochemical parameters were analyzed. Results: Serum amylase, tissue myeloperoxidase activity, malondialdehyde levels, serum cytokine levels, and mast cell degranulation rates were elevated after induction of AP, whereas tissue antioxidant enzyme activities and cell viability rates [determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay] decreased. These parameters were found to be different in the AP group compared with those in all other groups (P < 0.05). A significant improvement of all parameters was achieved with the TMZ treatment of AP. Histologically, significant differences were found between the AP and AP + TMZ groups in terms of leukocyte infiltration, necrosis, and apoptotic cell counts. Conclusions: In this study, we demonstrated that TMZ treatment protected the mitochondrial function and prevented the activation of the inflammatory cascade in the sodium taurocholate-induced AP model.WoSScopu

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore