109 research outputs found

    Scattering of non-uniform incident fields by long cylinders

    Get PDF
    Copyright University of BremenWe investigate experimentally far-field scattering from cylinders with illumination non-uniform along the axis of the cylinder. Scattered intensity as a function of angle in two orthogonal directions is examined. Variation along the scattering angle is found to be little affected by the illumination profile. However, variation in the transverse direction follows closely the Fourier transform of the illumination pattern and reproduces the angular distribution of the incident wave. These finding apply to circular as well as hexagonal cross-section cylinders

    Limits to mode-localized sensing using micro- and nanomechanical resonator arrays

    No full text
    In recent years, the concept of utilizing the phenomenon of vibration mode-localization as a paradigm of mechanical sensing has made profound impact in the design and development of highly sensitive micro- and nanomechanical sensors. Unprecedented enhancements in sensor response exceeding three orders of magnitude relative to the more conventional resonant frequency shift based technique have been both theoretically and experimentally demonstrated using this new sensing approach. However, the ultimate limits of detection and in consequence, the minimum attainable resolution in such mode-localized sensors still remain uncertain. This paper aims to fill this gap by investigating the limits to sensitivity enhancement imposed on such sensors, by some of the fundamental physical noise processes, the bandwidth of operation and the noise from the electronic interfacial circuits. Our analyses indicate that such mode-localized sensors offer tremendous potential for highly sensitive mass and stiffness detection with ultimate resolutions that may be orders of magnitude better than most conventional micro- and nanomechanical resonant sensors

    Effectiveness of resilient wheels in reducing noise and vibrations

    Get PDF
    This study focuses on the effectiveness of resilient wheels in reducing railway noise and vibrations, and compares the effectiveness of three types of wheels. The finite elements method has been used to characterise the vibratory behaviour of these wheels. The model has been excited with a realistic spectrum of vertical track irregularities, and a spectral analysis has been carried out. Results have been post-processed in order to estimate the sound power emitted. These calculations have been used to assess the effectiveness of the resilient wheel designs in reducing noise emitted to the environment and in propagating structural vibrations

    Speech rhythm: a metaphor?

    Get PDF
    Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep ‘prominence gradient’, i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a ‘stress-timed’ language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow ‘syntagmatic contrast’ between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and that it is this analogical process which allows speech to be matched to external rhythms

    Hybrid Simulation Theory for Continuous Beams

    Full text link
    Hybrid simulation is an experimental technique involving the integration of a physical system and a computational system with the use of actuators and sensors. This method has a long history in the experimental community and has been used for nearly 40 years. However, there is a distinct lack of theoretical research on the performance of this method. Hybrid simulation experiments are performed with the implicit assumption of an accurate result as long as sensor and actuator errors are minimized. However, no theoretical results confirm this intuition nor is it understood how minimal the error should be and what the essential controlling factors are. To address this deficit in knowledge, this study considers the problem as one of tracking the trajectory of a dynamical system in a suitably defined configuration space. To make progress, the study strictly considers a theoretical hybrid system. This allows for precise definitions of errors during hybrid simulation. As a model system, the study looks at an elastic beam as well as a viscoelastic beam. In both cases, systems with a continuous distribution of mass are considered as occur in real physical systems. Errors in the system are then tracked during harmonic excitation using space-time L2-norms defined over the system's configuration space. A parametric study is then presented of how magnitude and phase errors in the control system relate to the performance of hybrid simulation. It is seen that there are sharp sensitivities to control system errors. Further, the existence of unacceptably high errors whenever the excitations exceed the system's fundamental frequency is shown to be present in hybrid simulation

    Failure Analysis of Flow-induced Vibration Problem of in-serviced Duplex Stainless Steel Piping System in Oil and Gas Industry

    Get PDF
    Failure of the duplex stainless steel piping system in oil and gas industry can have disastrous effects. In this study, a novel method of failure analysis of flow-induced vibration problem of in-serviced duplex stainless steel piping system is proposed. The proposed non-destructive technique is able to determine a suitable operating condition for continuous operation without failure. The technique relies on the combined operation of operational modal analysis, operating deflection shape analysis and linear elastic finite element analysis. The effect of different operating conditions for two distinct valve opening cases (i.e. fully opened and partially opened) on the dynamic stress is examined, and they are utilised for forecasting purpose in failure analysis. The result shows that maximum operating conditions are 360 and 400 mmscfd for fully opened and partially opened flow control valves, respectively. Beyond this limit, the piping system most likely will fail

    A novel investigation into the application of non-destructive evaluation for vibration assessment and analysis of in-service pipes

    Get PDF
    Flow induced vibrations that are close to resonance frequencies are a major problem in all oil and gas processing industries, so all piping systems require regular condition monitoring and inspection to assess changes in their dynamic characteristics and structural integrity in order to prevent catastrophic failures. One of the main causes of pipe failure is weak support causing low frequency high amplitude flow-induced vibration. This causes wear and tear, especially near joints due to their dissimilar stiffness resulting in fatigue failure of joints caused by vibration-induced high cyclic stress. Other contributing factors in pipe failure are poor or inadequate design, poor workmanship during installation or maintenance and inadequate or weak and flexible support. These pipes are usually required to work non-stop for 24 hours a day 7 days a week for weeks, months or years at a time. Regular monitoring and in-service dynamic analysis should ensure continuous and safe operation. A novel method of non-destructive testing and evaluation of these pipes, while in service, is proposed in this paper. This technique will enable early detection and identification of the root causes of any impending failure due to excess vibration as a result of cyclic force induced by the flow. The method pinpoints the location of the impending failure prior to condition-based maintenance procedures. The technique relies on the combined application of Operating Deflection Shapes (ODS) analysis and computational mechanics utilizing Finite Element Analysis (FEA), i.e. linear elastic stress analysis. Any structural modification to the pipes and their supports can then be applied virtually and their effects on the system can be analysed. The effect on vibration levels is assessed and verified. The effect of any change in the forces corresponding to changes in the Differential Pressure (DP) at constant flow rate through the pipes can then be estimated. It was concluded that maintaining the differential pressure above some “critical” threshold ensures the pipe operates under the allowable dynamic stress for a theoretically “indefinite” life cycle
    corecore