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Abstract. In this paper, a neural network-based procedure is suggested to pro-

duce estimated solutions (controllers) for the second-order nonlinear partial dif-

ferential equations (PDEs). This concept is laid down so as to produce a preva-

lent approximation on the basis of the learning method which is at par with qua-

si-Newton rule. The proposed neural network contains the regularizing parame-

ters (weights and biases), that can be utilized for making the error function 

least. Besides, an advanced technique is presented for resolving PDEs based on 

the usage of Bernstein polynomial. Numerical experiments alongside compari-

sons show the fantastic capacity of the proposed techniques.   

Keywords: Neural Network, Bernstein Polynomial, Partial Differential Equa-

tions. 

1 Introduction 

Exact solution of differential equation plays a noteworthy role in the fitting seizing 

of qualitative characters of several processes as well as occurrences at par with sever-

al zones of natural science. Exact solutions authorize researchers for designing and 

carrying out experiments by developing valid natural conditions for determining these 

parameters or functions. However, obtaining the exact solutions of the PDEs is com-

plicated and is case specific. 

Several techniques have been proposed in literature in order to resolve different 

types of PDEs. In [1] the Homotopy perturbation technique is utilized to obtain the 

solution of PDEs with variable coefficients. In [2] the resolving of the PDEs requires 

two-dimensional differential transformation techniques. In [3] the modified technique 

of simplest equation is employed for extracting exact analytical solutions of nonlinear 

PDEs. In [4] an iteration technique in order to solve both linear as well as nonlinear 

wave equations is analyzed. In the following, some numerical solutions are laid down 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/161376676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

that have been suggested by other researchers. In [5], implementation of a spreadsheet 

program produces the numerical solution of the hyperbolic equation. Some research-

ers also generate an array solution that includes the value of the solution at a selected 

group of points [6]. 

Evje et al. [7] utilized an explicit monotone difference technique in order to esti-

mate the entropy solutions related to degenerate parabolic equation. Bulbul et al. [8] 

proposed a Taylor polynomial estimation for the solution of hyperbolic type PDEs 

having constant coefficients. In [9], the researchers analyzed double non-traveling 

wave solutions of two systems associated with nonlinear PDEs. In [10] convolution 

quadrature is employed to the time-domain boundary integral formulation related to 

the wave equation having non-zero initial conditions. In [11], Martinez worked on a 

linear wave equation having a boundary damping term. Catania et al. For prevailing 

results related to the feedback control of the wave equation we suggest [12] and for 

open-loop control of the wave equation we refer [13]. However, the above discussed 

techniques are very complicated. Since the solutions associated with PDE are consid-

ered to be uniformly continuous, also the problems linked to the viable sets are usual-

ly compact, neural networks are best suited candidates in order to estimate viability 

problems [14]. 

Neural network finds its application in the fields of mathematics, chemistry, phys-

ics, and numerous applications [15-20]. They have become recently popular for solv-

ing PDEs. In [21] a feed-forward neural network is laid down in order to resolve an 

elliptic PDE in 2D. Another methodology is proposed in [22] for resolving a class of 

first-order PDEs on the basis of Multilayer neural networks. In [23] an unsupervised 

neural network is suggested in order to solve the nonlinear Schrodinger equation. In 

[24] the solutions of vibration control problems by utilizing artificial neural networks 

is discussed. In [25] a controlled heat problem up to three decimal digits accuracy is 

resolved by utilizing feed forward neural networks. 

In this paper, a methodology based on neural networks is proposed in order to 

solve the strongly degenerate parabolic equations. The trial solution related to the 

PDE is stated as an addition of two parts. The primary part suffices the initial and 

boundary conditions, and does not have adjustable parameters. The secondary part 

includes a neural network having adjustable parameters (weights and biases). Further-

more, a superiorly modified technique is laid down in order to solve a wave equation 

in concerned with the application of Bernstein neural networks, that contains an ex-

cellent attributes of Bernstein polynomial. The Bernstein polynomial extracts its posi-

tion in the theory of estimation considering the fact that it has good uniform approxi-

mation capability for continuous functions. These polynomials are suitable to produce 

a smooth estimation for equal distance knots [26]. The implementation of Bernstein 

polynomials is suggested in this paper, because it is extensively simple to apply. Also 

it is continuously differentiable due to the nature of theoretical contents. 

The rest of this paper is organized as follows. Section 2 provides a summarized de-

scription of PDEs. An innovative method for resolving PDEs based on the neural 

networks is proposed in this section. Also, an advanced method is supplied for solving 

PDEs based on the application of a Bernstein neural network named as dynamic mod-
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el. Experiments, simulation results, and comparisons are completed and discussed in 

Section 3. Section 4 concludes the paper. 

2 Nonlinear system modeling with partial differential equations 

Definition 1 (Second-order nonlinear PDE) The second-order singular nonlinear 

PDE can be illustrated by utilizing the equation mentioned below 

𝜕2𝑣(𝑥,𝑡)

𝜕𝑡2 +
2

𝑡
 
𝜕𝑣(𝑥,𝑡)

𝜕𝑡
= 𝐹(𝑥, 𝑣(𝑥, 𝑡),

𝜕𝑣(𝑥,𝑡)

𝜕𝑥
,
𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2 )  (1) 

 in which 𝑡 and 𝑥 are independent variables, 𝑣 is the dependent variable, 𝐹 is a nonlin-

ear function of 𝑥, 𝑣,𝑣𝑥 and 𝑣𝑥𝑥, also the initial conditions for the PDE (1) are illustrat-

ed as below 

𝑣(𝑥, 0) = 𝑓(𝑥),    𝑣𝑡(𝑥, 0) = 𝑔(𝑥) 

Definition 2 (Strongly degenerate parabolic equations) The strongly degenerate 

parabolic equation is described as  

𝑣𝑡 + 𝑄(𝑣)𝑥 = 𝐴(𝑣)𝑥𝑥, (𝑥, 𝑡) ∈ Π𝑇 ≔ [0,1] × (0, 𝑇),    𝑇 > 0 (2) 

with boundary conditions 

𝑣(𝑥, 0) = 𝑔0(𝑥),   𝑣(0, 𝑡) = 𝑓0(𝑡),   𝑣(1, 𝑡) = 𝑓1(𝑡) (3) 

in which the integrated diffusion coefficient 𝐴 is demonstrated by 

𝐴(𝑣) = ∫ 𝑎(𝑠)𝑑𝑠,
𝑣

0
   𝑎(𝑣) ≥ 0, 𝑎 ∈ 𝐿∞([0,1]) ∩ 𝐿1([0,1]) (4) 

The function 𝑎 is permitted to disappear on 𝑣-intervals of positive length, on which 

Eq. (2) degenerates to a first-order scalar conservation law. Therefore, Eq. (2) is 

named as strongly degenerate. 

Definition 3 (wave equation) The Cauchy problem related to the wave equation in 

one dimension is defined as 

𝜕2𝑣(𝑥,𝑡)

𝜕𝑡2 = 𝑐2 𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2 ,   (𝑥, 𝑡) ∈ [0, 𝑎] × [0, 𝑏] (5) 

with 

𝑣(𝑥, 0) = 𝜙(𝑥),    𝑣𝑡(𝑥, 0) = 𝜓(𝑥) 

where 𝑎 as well as 𝑏 are constants. In the above mentioned equation, the parameter 𝑐 

is termed as the speed of light. 

2.1 Controller design with neural networks approximation 

Here, we construct a neural network for resolving the strongly degenerate parabolic 

equation that obtains the solution of differential equations in a closed analytic and 

differentiable form (Figure 1). The relation between the input-output of each unit in 

the suggested neural architecture is described as follows 
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 Input units 

𝑜1
1 = 𝑥, 𝑜2

1 = 𝑡 

 Hidden units 

𝑜𝑗
2 = 𝐹(𝑏𝑗 + 𝑤𝑗

1𝑥 + 𝑤𝑗
2𝑡),   𝑗 = 1,… ,𝑚 

 Output unit: 

 𝑁(𝑥, 𝑡) = ∑ (𝑊𝑗𝑜𝑗
2)𝑚

𝑗=1  

 
Fig. 1.   Neural network equivalent to strongly degenerate parabolic equations 

The activation function of the hidden units in this neural network is 𝐹(𝑟) =
2

1+𝑒−2𝑟 −

1 (tan-sigmoid function). The trial solution associated with (2) is portrayed as 

𝑣𝑚(𝑥, 𝑡) = (1 − 𝑥)𝑓0(𝑡) + 𝑥𝑓1(𝑡) + (1 − 𝑡){𝑔0(𝑥) − [(1 − 𝑥)𝑔0(0) + 𝑥𝑔0(1)]}
+ 𝑥(1 − 𝑥)𝑡𝑁(𝑥, 𝑡) 

where  

𝑁(𝑥, 𝑡) = ∑(𝑊𝑗𝐹(𝑏𝑗 + 𝑤𝑗
1𝑥 + 𝑤𝑗

2𝑡))

𝑚

𝑗=1

 

The least mean square error is obtained for (𝑥, 𝑡)  =  (𝑥𝑖 , 𝑡𝑗) as below 

𝐸𝑖,𝑗 =
1

2
(𝑀𝑖,𝑗)

2 

where  

𝑀𝑖,𝑗 =
𝜕𝑣𝑚(𝑥, 𝑡)

𝜕𝑡
| 𝑥=𝑥𝑖

𝑡=𝑡𝑗

+
𝜕𝑄(𝑣𝑚(𝑥, 𝑡))

𝜕𝑥
| 𝑥=𝑥𝑖

𝑡=𝑡𝑗

−
𝜕2𝐴(𝑣𝑚(𝑥, 𝑡))

𝜕𝑥2
| 𝑥=𝑥𝑖

𝑡=𝑡𝑗

 

In order to adjust the parameters we utilize Newton’s rule. The standard self-learning 

process works as below 
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𝑊𝑞(𝑟 + 1) = 𝑊𝑞(𝑟) − 𝜇(𝑟)
𝜕𝐸𝑖,𝑗

𝜕𝑤𝑞
+ 𝛾[𝑊𝑞(𝑟) − 𝑊𝑞(𝑟 − 1)] (6) 

Now, the explicit technique of Eq. (6) is illustrated as 

[
𝑊1

⋮
𝑊𝑚

]

𝑟+1

= [
𝑊1

⋮
𝑊𝑚

]

𝑟

−
(∇𝐸𝑖,𝑗(𝑊)𝑟)

𝑇
∇𝐸𝑖,𝑗(𝑊)𝑟

(∇𝐸𝑖,𝑗(𝑊)𝑟)
𝑇
𝑄𝑟∇𝐸𝑖,𝑗(𝑊)𝑟

∇𝐸𝑖,𝑗(𝑊)𝑟 + 𝛾 [
∆𝑊1

⋮
∆𝑊𝑚

]

𝑟−1

  (7) 

where 

𝛻𝐸𝑖,𝑗(𝑊) = (
𝜕𝐸𝑖,𝑗

𝜕𝑊1
, … ,

𝜕𝐸𝑖,𝑗

𝜕𝑊𝑚
)𝑇  

and 

𝑄 =

[
 
 
 
 
 
 
 

𝜕2𝐸𝑖,𝑗

𝜕𝑊1
2

𝜕2𝐸𝑖,𝑗

𝜕𝑊2𝜕𝑊1
⋯

𝜕2𝐸𝑖,𝑗

𝜕𝑊𝑚𝜕𝑊1

𝜕2𝐸𝑖,𝑗

𝜕𝑊1𝜕𝑊2

𝜕2𝐸𝑖,𝑗

𝜕𝑊2
2

…
𝜕2𝐸𝑖,𝑗

𝜕𝑊𝑚𝜕𝑊2

⋯

⋯
…

⋯

𝜕2𝐸𝑖,𝑗

𝜕𝑊1𝜕𝑊𝑚

𝜕2𝐸𝑖,𝑗

𝜕𝑊2𝜕𝑊𝑚
⋯

𝜕2𝐸𝑖,𝑗

𝜕𝑊𝑚
2 ]

 
 
 
 
 
 
 

 

The chain rule for differentiation can be illustrated as  

𝜕𝐸𝑖,𝑗

𝜕𝑊𝑞
=

𝜕𝐸𝑖,𝑗

𝜕𝑀𝑖,𝑗
.
𝜕𝑀𝑖,𝑗

𝜕𝑊𝑞
= 𝑀𝑖,𝑗

𝜕𝑀𝑖,𝑗

𝜕𝑊𝑞
  

The above learning procedure can be extended to other network parameters 

(𝑤𝑞
1, 𝑤𝑞

2and 𝑏𝑞) in a same way.  
2.2 Controller design with Bernstein neural networks approximation 

We carry forward our strategy for resolving wave equations by utilizing two pat-

terns of Bernstein neural networks. Let us take into consideration the Cauchy problem 

(5), where the solution v relies on both spatial as well as temporal variables 𝑥 and 𝑡 

respectively. The trial solution associated with (5) in the form of the Bernstein neural 

network is portrayed as 

𝑣𝑚(𝑥, 𝑡) = 𝜙(𝑥) + 𝑡𝜓(𝑥) + 𝑡[𝐵(𝑥, 𝑡) − 𝐵(𝑥, 0) −
𝜕𝐵(𝑥,0)

𝜕𝑡
]  

where 𝐵(𝑥, 𝑡) is the bivariate Bernstein polynomial series of solution function 𝑣(𝑥, 𝑡), 

termed as 

𝐵(𝑥, 𝑡) = ∑ ∑ (
𝑛
𝑖
) (

𝑚
𝑗 )𝑚

𝑗=0
𝑛
𝑖=0

𝑥𝑖(𝑎−𝑥)𝑛−𝑖

𝑎𝑛

𝑡𝑗(𝑏−𝑡)𝑚−𝑗

𝑏𝑚 𝑞𝑖,𝑗(𝑥, 𝑡),    𝑛,𝑚 ∈ 𝑁  

𝑞𝑖,𝑗  is the coefficient. We can state the above relation as 

𝐵(𝑥, 𝑡) = ∑ ∑ 𝛽𝑖,𝑗
𝑚
𝑗=0

𝑛
𝑖=0 𝑥𝑖(𝑎 − 𝑥)𝑛−𝑖𝑡𝑗(𝑏 − 𝑡)𝑚−𝑗𝑞𝑖,𝑗(𝑥, 𝑡),    𝑛,𝑚 ∈ 𝑁  , 𝛽𝑖,𝑗 =

1

𝑎𝑛𝑏𝑚 (
𝑛
𝑖
) (

𝑚
𝑗 )  (8) 
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where (
𝑛
𝑖
) =

𝑛!

𝑖!(𝑛−𝑖)!
    and (

𝑚
𝑗 ) =

𝑚!

𝑗!(𝑚−𝑗)!
 

Taking into account the follow relations 

𝜕2𝑣𝑚(𝑥,𝑡)

𝜕𝑥2 = 𝜙′′(𝑥) + 𝑡𝜓′′(𝑥) + 𝑡[
𝜕2𝐵(𝑥,𝑡)

𝜕𝑥2 −
𝜕2𝐵(𝑥,0)

𝜕𝑥2 −
𝜕2𝜕𝐵(𝑥,0)

𝜕𝑥2𝜕𝑡
]  

and  

𝜕2𝑣𝑚(𝑥,𝑡)

𝜕𝑡2 = 2
𝜕𝐵(𝑥,𝑡)

𝜕𝑡
+ 𝑡

𝜕2𝐵(𝑥,𝑡)

𝜕𝑡2   

replacing the above relations in the origin problem (5) gives us the following differen-

tial equation 

2
𝜕𝐵(𝑥,𝑡)

𝜕𝑡
+ 𝑡

𝜕2𝐵(𝑥,𝑡)

𝜕𝑡2 = 𝑐2 (𝜙′′(𝑥) + 𝑡𝜓′′(𝑥) + 𝑡 [
𝜕2𝐵(𝑥,𝑡)

𝜕𝑥2 −
𝜕2𝐵(𝑥,0)

𝜕𝑥2 −
𝜕2𝜕𝐵(𝑥,0)

𝜕𝑥2𝜕𝑡
])  (9) 

(𝑥, 𝑡) ∈ [0, 𝑎] × [0, 𝑏] 
For simplicity the above relation can be justified as mentioned below 

∑ ∑ 𝜉𝑖,𝑗(𝑥, 𝑡)𝑚
𝑗=0

𝑛
𝑖=0 𝑞𝑖,𝑗(𝑥, 𝑡) = 𝜁(𝑥, 𝑡),    (𝑥, 𝑡) ∈ [0, 𝑎] × [0, 𝑏] (10) 

where 

𝜉𝑖,𝑗(𝑥, 𝑡) = 2𝛽𝑖,𝑗𝑥
𝑖(𝑎 − 𝑥)𝑛−𝑖(𝑗𝑡𝑗−1(𝑏 − 𝑡)𝑚−𝑗 − (𝑚 − 𝑗)𝑡𝑗(𝑏 − 𝑡)𝑚−𝑗−1) +

𝑡𝛽𝑖,𝑗𝑥
𝑖(𝑎 − 𝑥)𝑛−𝑖(𝑗(𝑗 − 1)𝑡𝑗−2(𝑏 − 𝑡)𝑚−𝑗 − 2𝑗(𝑚 − 𝑗)𝑡𝑗−1(𝑏 − 𝑡)𝑚−𝑗−1 + (𝑚 −

𝑗)(𝑚 − 𝑗 − 1)𝑡𝑗(𝑏 − 𝑡)𝑚−𝑗−2) + 𝑐2𝑡𝛽𝑖,𝑗(𝑖(𝑖 − 1)𝑥𝑖−2(𝑎 − 𝑥)𝑛−𝑖 − 2𝑖(𝑛 −

𝑖)𝑥𝑖−1(𝑎 − 𝑥)𝑛−𝑖−1 + (𝑛 − 𝑖)(𝑛 − 𝑖 − 1)𝑥𝑖(𝑎 − 𝑥)𝑛−𝑖−2)𝑡𝑗(𝑏 − 𝑡)𝑚−𝑗 −
𝑐2𝑡𝛽𝑖,𝑗(𝑖(𝑖 − 1)𝑥𝑖−2(𝑎 − 𝑥)𝑛−𝑖 − 2𝑖(𝑛 − 𝑖)𝑥𝑖−1(𝑎 − 𝑥)𝑛−𝑖−1 + (𝑛 − 𝑖)(𝑛 − 𝑖 −

1)𝑥𝑖(𝑎 − 𝑥)𝑛−𝑖−2)(𝑗𝑡𝑗−1(𝑏 − 𝑡)𝑚−𝑗 − (𝑚 − 𝑗)𝑡𝑗(𝑏 − 𝑡)𝑚−𝑗−1)  

and 

𝜁(𝑥, 𝑡) = 𝑐2 (𝜙′′(𝑥) + 𝑡𝜓′′(𝑥) + 𝑡
𝜕2𝐵(𝑥,0)

𝜕𝑥2 )  

The Bernstein neural network (8) is shown in Figure 2. 

In the above architecture the mathematical symbol is defined as 

 

𝜑𝑖,𝑗 = ∑∑(
𝑛
𝑖
) (

𝑚
𝑗 )

𝑥𝑖(𝑎 − 𝑥)𝑛−𝑖

𝑎𝑛

𝑡𝑗(𝑏 − 𝑡)𝑚−𝑗

𝑏𝑚
,    𝑛,𝑚 ∈ 𝑁

𝑚

𝑗=0

𝑛

𝑖=0

 

The relation between the input-output of each unit in the suggested neural architecture 

is described as follows 

 Input unit  

𝑜𝑖,𝑗 = 𝑞𝑖,𝑗     𝑖 = 0,… , 𝑛,   𝑗 = 0,… ,𝑚 

 Output unit  
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𝑁(𝑥, 𝑡) = 𝜑𝑖,𝑗𝑜𝑖,𝑗 

 

 
Fig. 2. Dynamic Bernstein neural network 

 

Now, an appropriate numerical methodology should be capable enough to supply a 

suitable tool in order to measure and compute the preciseness of the extracted solu-

tion. Laying down the cost function 𝐸𝑖,𝑗 over the model parameters makes it a good 

predictor. The least mean square error is stated to be as one of the most talked usable 

cost function associated with 𝐸𝑖,𝑗 . Assume that 0 ≤ 𝑥 ≤ 1, the rectangle [0,1] ×

[0, 𝑇]is divided into 𝑛𝑛′ mesh points(𝑥𝑖 , 𝑡𝑗) = ((𝑖 − 1)ℎ, (𝑗 − 1)ℎ′), ℎ =
1

𝑛−1
, ℎ′ =

𝑇

𝑛′−1
, (𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑛′).Therefore for comparing the exact solution with its 

extracted one, the least mean square error is utilized that is described as mentioned 

below  

𝐸𝑖,𝑗 =
1

2
(∑∑𝜉𝑖,𝑗(𝑥, 𝑡)𝑞𝑖,𝑗(𝑥, 𝑡) − 𝜁(𝑥, 𝑡))2

𝑚

𝑗=0

𝑛

𝑖=0

 

We utilize Newton’s rule as mentioned in (12) in order to adjust the parameters in 

such a manner that the network error attains minimal over the space of weights set-

ting. The initial parameter 𝑞𝑖,𝑗  is chosen on a random basis in order to start the proce-

dure. The illustrated standard self-learning process works as below 

𝑞𝑖,𝑗(𝑟 + 1) = 𝑞𝑖,𝑗(𝑟) − 𝜇(𝑟)
𝜕𝐸𝑖,𝑗

𝜕𝑞𝑖,𝑗
 

where  𝜇 is the training rate 𝜇 >  0. For increasing the training process, a momentum 

term is added up as follows 

𝑞𝑖,𝑗(𝑟 + 1) = 𝑞𝑖,𝑗(𝑟) − 𝜇(𝑟)
𝜕𝐸𝑖,𝑗

𝜕𝑞𝑖,𝑗
+ 𝛾[𝑞𝑖,𝑗(𝑟) − 𝑞𝑖,𝑗(𝑟 − 1)] (11) 
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where  𝛾 > 0. The index 𝑟 is the iteration number. Also, 𝑞𝑖,𝑗(𝑟 + 1) and 𝑞𝑖,𝑗(𝑟) repre-

sents the updated and recent output weight values, respectively. Now, the explicit 

technique of Eq. (11) is illustrated as 

[

𝑞0,0

⋮
𝑞𝑛,𝑚

]

𝑟+1

= [

𝑞0,0

⋮
𝑞𝑛,𝑚

]

𝑟

−
(∇𝐸𝑖,𝑗(𝑞)𝑟)

𝑇
∇𝐸𝑖,𝑗(𝑞)𝑟

(∇𝐸𝑖,𝑗(𝑞)𝑟)
𝑇
𝑄𝑟∇𝐸𝑖,𝑗(𝑞)𝑟

∇𝐸𝑖,𝑗(𝑞)𝑟 + 𝛾 [

∆𝑞0,0

⋮
∆𝑞𝑛,𝑚

]

𝑟−1

 (12) 

where 

𝛻𝐸𝑖,𝑗(𝑞) = (
𝜕𝐸𝑖,𝑗

𝜕𝑞0,0
, … ,

𝜕𝐸𝑖,𝑗

𝜕𝑞𝑛,𝑚
)𝑇 

and 

𝑄 =

[
 
 
 
 
 
 

𝜕2𝐸𝑖,𝑗

𝜕𝑞0,0
2

𝜕2𝐸𝑖,𝑗

𝜕𝑞1,1𝜕𝑞0,0
⋯

𝜕2𝐸𝑖,𝑗

𝜕𝑞𝑛,𝑚𝜕𝑞0,0

𝜕2𝐸𝑖,𝑗

𝜕𝑞0,0𝜕𝑞1,1

𝜕2𝐸𝑖,𝑗

𝜕𝑞1,1
2

…
𝜕2𝐸𝑖,𝑗

𝜕𝑞𝑛,𝑚𝜕𝑞1,1

⋯

…

⋯
⋯

𝜕2𝐸𝑖,𝑗

𝜕𝑞0,0𝜕𝑞𝑛,𝑚

𝜕2𝐸𝑖,𝑗

𝜕𝑞1,1𝜕𝑞𝑛,𝑚
…

𝜕2𝐸𝑖,𝑗

𝜕𝑞𝑛,𝑚
2 ]

 
 
 
 
 
 

 (13) 

are calculated at the current mesh points (𝑥𝑖 , 𝑡𝑗) In this case, 𝑄 is the Hessian matrix 

with components 
𝜕2𝐸𝑖,𝑗

𝜕𝑞𝑖,𝑗𝜕𝑞�̃�,�̃�
 (for 𝑖, 𝑖̃ = 0, … , 𝑛; 𝑗, 𝑗̃ = 0, … ,𝑚). It is clear that the conver-

gence speed is in direct relation at par with the learning rate parameter. For attaining 

the optimal learning rate in concerned with rapid convergence of our learning optimi-

zation rule, the inverse of Hessian matrix 𝑄 of the error function 𝐸𝑖,𝑗is introduced at 

the current mesh points. The Newton technique mentioned above is very much capa-

ble for scaling the descent step in each step. Now, the partial derivative 
𝜕𝐸𝑖,𝑗

𝜕𝑞𝑖,𝑗
 can be 

extracted at the current weight values. 

3 Numerical results and discussion 

All computations mentioned in the following tables are obtained by utilizing 

Matlab.  

Example 1 The Buckley-Leverett differential equation is portrayed as [27] 

𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑔(𝑣(𝑥, 𝑡))

𝜕𝑥
=

𝜕2𝐴(𝑣(𝑥, 𝑡))

𝜕𝑥2
 

Where 

 𝑔(𝑣) =
𝑣2

𝑣2+(1−𝑣)2
 , 𝑎(𝑣) = 4𝜀𝑣(1 − 𝑣), 

 on the domain (𝑥, 𝑡) ∈ [0,1] × [0,0.5] with initial condition 
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𝑣0(𝑥) = {
0          𝑥 < 0.1
1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and boundary conditions  

𝑣(0, 𝑡) = 1,        𝑣(1, 𝑡) = 0 

also, 𝜀 = 0.01 
The following characteristics are taken into consideration 

I. Time step: 𝑘′ = 0.98
𝑘2

𝑘‖𝑔′‖∞+2𝜀‖𝑎‖∞
 

II. 𝐿1-error 𝐸𝑚𝑖𝑑 = (∑ ∑ |𝑣(𝑥𝑖 , 𝑡𝑗)|
𝑛′
𝑗=1

𝑛
𝑖=1 )−1 ∑ ∑ |𝑣(𝑥𝑖 , 𝑡𝑗) − 𝑣𝑚(𝑥𝑖 , 𝑡𝑗)|

𝑛′
𝑗=1

𝑛
𝑖=1  

where 𝑣𝑚(𝑥𝑖 , 𝑡𝑗) as well as 𝑣(𝑥𝑖 , 𝑡𝑗) are termed as the calculated solution and exact 

value of reference solution at grid point (𝑥𝑖 , 𝑡𝑗), respectively. 

This problem is solved by applying the methodology of neural network proposed in 

this paper. Comparisons between the suggested algorithm on different training steps 

and the discrete mollification scheme [27] with support parameter 𝜗 are displayed in 

Table 1.  
Table 1. Approximation errors of neural network based algorithm and mollified method 

1/k 
Mollified method 

r 
NN method 

𝝑 = 𝟑 𝝑 = 𝟓 𝝑 = 𝟖 𝒎 = 𝟕 𝒎 = 𝟏𝟏 𝒎 = 𝟏𝟕 
64 2.6105e-2 2.5327e-2 2.5055e-2 15 2.4021e-2 1.8035e-2 1.0012e-2 
128 1.4932e-2 1.4287e-2 1.4133e-2 30 8.0207e-3 6.8025e-3 5.5215e-3 
256 8.3709e-3 7.9698e-3 7.6833e-3 45 1.9548e-3 1.0008e-3 8.9025e-4 
512 4.5075e-3 4.3271e-3 4.1141e-3 60 4.9925e-4 3.1875e-4 1.9011e-4 

1024 1.9997e-3 1.9335e-3 1.8279e-3 75 7.3081e-5 5.8295e-5 4.6952e-5 

Example 2 The following wave equation is taken into consideration that models 

the motion associated with the guitar string of length L 
𝜕2𝑣(𝑥,𝑡)

𝜕𝑡2 = 𝑐2 𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2   

with the boundary conditions 

 𝑣(0, 𝑡) = 𝑠𝑖𝑛(𝜋𝑡) ,      𝑣(𝐿, 𝑡) = 0 

on the domain (𝑥, 𝑡) ∈ [0, 𝐿] × [0, 𝑇] initial position and velocity 

 𝑣(𝑥, 0) = 0,   𝑣𝑡(𝑥, 0) = 𝜋cos (𝜋𝑥) 

In the proposed problem 𝑐2 =
𝑇𝑠

𝜌
 ,where 𝑇𝑠 is taken to be the tension in the string, 

also 𝜌 is the density of the string. The specifications mentioned here are given by 𝐿 =

1, 𝑇 = 4, 𝑇𝑠 = 2
𝑁

𝑚
 and 𝜌 = 2

𝑘𝑔

𝑚3. The exact solution related to the problem is 

𝑣(𝑥, 𝑡) = cos(𝜋𝑥) sin(𝜋𝑡). 

We use dynamic Bernstein neural network (DNN) to approximate the solution. To 

compare our results, we use the other two popular methods: 3-point explicit method 

and optimal explicit method [28]. The exact solution is displayed in Figure 3. Corre-

sponding approximated error plots are shown in Figure 4.  

Example 3 Two semi-infinite strings of different densities are joined as [29] 

 
𝜕2𝑣(𝑥,𝑡)

𝜕𝑡2 = (𝑐1
2 + 𝑐2

2)
𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2  

with the boundary conditions 

 𝑣(0, 𝑡) = cos(𝜋𝑡) ,   𝑣(𝐿, 𝑡) = 0 

On the domain (𝑥, 𝑡) ∈ [0, 𝑇] initial position and velocity 
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 𝑣(𝑥, 0) = cos (𝜋𝑥),   𝑣𝑡(𝑥, 0) = 0 

 

Fig. 3.  Plot of the exact solution 

 see Figure 5. In the proposed problem 𝑐 = √
𝐸

𝜌
, where is the Young’s modulus, 

also 𝜌is the density of the rod. The specifications mentioned here are given by 𝐿 = 1, 

𝑇 = 5, 𝐸1 = 2
𝑘𝑔

𝑚.𝑠2 ,𝜌1 = 2.882
𝑘𝑔

𝑚3 ,𝐸2 = 4.3
𝑘𝑔

𝑚.𝑠2 and 𝜌1 = 15.136
𝑘𝑔

𝑚3. The exact 

solution related to the problem is 

𝑣(𝑥, 𝑡) =
1

2
(𝑐𝑜𝑠(𝜋(𝑥 + 𝑡)) + 𝑐𝑜𝑠(𝜋(𝑥 − 𝑡))). The exact solution is displayed in 

Figure 6. Figure 7 shows the approximated error with DNN. 

 

Fig. 4. Plot of the approximated error with 3-point explicit, optimal explicit, SNN and DNN 

 
Fig. 5. Two semi-infinite strings of different densities 

 
Fig. 6. Plot of the exact solution 
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Fig. 7. Plot of the approximated error with DNN for r=70 

4 Conclusions 

This paper proposes a method based on the neural networks for finding the solutions 

of the second-order nonlinear PDEs. It is controller design process. The trial solution 

related to the PDE is stated as an addition of two parts. The primary part suffices the 

initial and boundary conditions, also does not have adjustable parameters. The sec-

ondary part includes a neural network having adjustable parameters (weights and 

biases). Also, a type of Bernstein neural networks namely dynamic model is proposed 

in order to resolve the PDEs. For obtaining the superior estimated solution of PDEs, 

the adjustable parameters at par with the Bernstein neural network are adjusted in 

suitable manner by implementing quasi-Newton learning algorithm. 

Numerical examples as well as comparison with solution obtained by the employ-

ing other numerical methodologies open up that the use of neural networks based on 

quasi-Newton learning rule provides solutions with superior generalization and major 

accuracy. The future work is the application of the mentioned methodologies for sys-

tem of PDEs. 
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