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In oil and gas industry, piping system provides transport for a wide range of substances 

such as petrochemicals and water. They are required to operate nonstop for a schedule of 

24/7. Flow-induced vibration (FIV) of the piping system is the most common causes of 

high cycle fatigue. Besides, excessive load caused by unfavourable operating condition 

may increase the probability of failure occurrence. Duplex Stainless Steel (DSS) is 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/59833111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


commonly used for piping system in oil and gas industry due to its reasonable high 

endurance limit for dynamic stress intensity, high corrosion resistance and low cost. 

Failure of the DSS piping system can have disastrous effects, leading to injuries and 

fatalities as well as to substantial cost to industry and the environment. Therefore, there is 

a need to perform failure analysis of this kind of flow-induced vibration problem. In this 

study, novel method of failure analysis of DSS piping system due to flow-induced 

vibration, while in-service, is proposed. The proposed non-destructive technique is able 

to determine a suitable operating condition for continuous operation without failure. The 

technique relies on the combined operation of Operational Modal Analysis (OMA), 

Operating Deflection Shape (ODS) analysis and linear elastic Finite Element Analysis 

(FEA). Modal parameters obtained from OMA are used to correlate with FE model, 

while the ODS analysis result is used as initial displacement boundary condition to 

measure dynamic stresses through the FEA. The effect of different operating conditions 

(i.e. flow rates at 275mmscfd, 300mmscfd, 325mmscfd and 350mmscfd) for two distinct 

valve opening cases (i.e. fully-open and partially-opened) on the dynamic stress is 

examined and they are utilised for forecasting purpose in failure analysis. The result 

shows that maximum operating conditions are 360mmscfd and 400mmscfd for fully-

opened and partially-opened Flow Control Valves (FCVs) respectively. Beyond this limit, 

the piping system most likely will fail. 

Keywords: Duplex Stainless Steel, failure analysis, finite element analysis, flow-induced 

vibration, in-serviced pipe, non-destructive, operating deflection shape, operational modal 

analysis, piping system, stress analysis 

 



Introduction 

In oil and gas industry, pipelines and piping system provides transport for a wide range of 

substances such as petrochemicals and water and they fulfil safety functions – e.g. 

cooling systems in nuclear power plants. They are required to operate nonstop for a 

schedule of 24/7. Duplex Stainless Steel (DSS) is commonly used for piping system in oil 

and gas industry due to its reasonable high endurance limit for dynamic stress intensity, 

high corrosion resistance and low cost. Failure of DSS piping systems can have 

disastrous effects, leading to injuries and fatalities as well as to substantial cost to 

industry and the environment. Besides, piping vibration problems in operating plants 

have resulted in costly unscheduled outages and backfits.
1
 Piping vibration failures have 

been one of the major causes of downtime, fires and explosions in industrial plant over 

the past 30 years. For example, one piping failure at a petrochemical plant in 1974 caused 

over $114,000,000 in property damage due to an explosion.
2
  

Vibration loading, typically mechanical or flow-induced, are the most common 

causes of high cycle fatigue.
3
 Besides, excessive load caused by unfavourable operating 

condition may increase the probability of failure occurrence. Besides, on a survey 

conducted by Kutsu and Scholl
4
, pipe cracking was identified as the most frequently 

recurring problem, the most significant cause of which was determined to be piping 

vibration. Mechanical vibration was the cause of 22.3% of all reportable occurrences 

involving pipes and fittings. One of the main causes of the unpredictable behaviour of 

pipes is the induced vibrations due to the interaction between the structure (walls of the 

pipe as well as the pipe supports) and the fluid flowing through the pipe. Generally the 

fluid behaves as a turbulent flow and exerts random pressures on the wall of the pipe.
5
 



Fluid-structure interaction, turbulent flow fluctuations and unsteady pressure induces 

random excitation of the pipe and support structure which may result in resonant 

vibrations. It has been shown that the fluid-structure interaction phenomenon induces a 

significant dynamic response in the structure which alternates the fluid forces acting on 

the inside walls of the pipes.
6
  

Failure analysis focuses on collecting and analysing data to determine the cause of 

a failure, includes recommending the failure prevention methods. A lot of studies had 

been done on finding the root cause of failure.
7-10

 Previous studies
11-14

 showed that Flow-

Induced vibration (FIV) is the major root cause of many piping failure. Therefore, the 

current study focuses on the prevention method for FIV-caused problem. Prevention of 

FIV problem can be done by monitoring the structural health condition. Non-destructive 

structural health monitoring is of primary important for in-serviced piping system. It can 

be done in several ways, such as damage detection method with system identification 

method
15-17

 and force identification method
18, 19

. 

The use of vibration analysis and modal parameters is already common place in 

system identification and force identification. Extracting modal parameters while the 

system is in operation is not possible but it is highly desirable. This is well known as 

Operational Modal Analysis (OMA) as demonstrated by references
20-22

 which utilises 

ambient forces generated due to their own operation. In addition, other types of OMA 

named Impact-Synchronous Modal Analysis (ISMA) has been implemented widely, 

which utilises artificial impact excitation.
23, 24

 Another form of checking structures for 

signs of excess movement is Operating Deflection Shape (ODS) analysis which is a non-

invasive and non-destructive approach used to monitor the overall dynamics and the 
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condition of a system while in operation.
25-27

 This method is useful when classical 

condition monitoring is not possible or when a full 3D visualization of the dynamics of 

the motion is desirable.
27

 With the growth in the power of digital computers, Finite 

Element Analysis has been utilised in many analysis, such as stress analysis
28-30

. 

 In this paper, a non-destructive method of failure analysis for an in-serviced DSS 

piping system due to flow-induced vibration is proposed. The technique relies on the 

combined application of OMA, ODS analysis and Finite Element Analysis (FEA). The 

highest operating flow rate for the piping system in two distinct valve opening cases (i.e. 

fully-opened and partially-opened) could be determined based on the results of dynamic 

stress analysis. Hence, this information is utilized to ensure that the pipe operates under 

the allowable dynamic stress for a “theoretically infinite” life cycle.   

 

Theory 

Experimental Modal Analysis (EMA) vs Operational Modal Analysis (OMA) 

Modal analysis is used to measure the dynamic characteristic of a system such as natural 

frequency, damping and mode shape. It can be divided into two types: Experimental 

Modal Analysis (EMA) and OMA. The former analysis requires a complete ‘shutdown’ 

situation of the system with no unaccounted excitation force.
31

 EMA is conducted by 

using an artificial excitation with impact hammer or shaker.
32

 Instead of field testing with 

large and complete system, EMA is used for lab testing of individual components or parts 

of the system. In this case, actual boundary conditions in lab environment may vary with 

the one in field environment. Therefore, boundary conditions need to be reasonably 



simulated when using EMA.
33

 If EMA is performed under a ‘operation’ situation, the 

induced response will be a linear superimposition of the responses due to artificial 

excitation, unaccounted operating forces, ambient forces, and so forth.
24

 This will cause 

error to the measured Frequency Response Function (FRF) which is the transfer function 

between output response and input force. In fact, FRF contains the information of 

dynamic characteristics of a system and modal parameters can be extracted from FRF by 

using curve fitting algorithm. As a result, conducting EMA under an ‘operation’ situation 

always cause poor coherence result primary due to the unaccountable operating forces. 

 Compared to EMA, OMA is performed under an ‘operation’ situation. In this 

case, output-only measurement (i.e. response measurement) due to the operating forces 

and ambient forces is needed for OMA. In this way, OMA is cheap and fast to conduct 

because it needs no elaborate excitation equipment and boundary condition simulation.
33

 

Besides, dynamic characteristics of a complete system can be obtained under real 

‘operation’ situation via OMA. The operating forces acting on the in-serviced system 

usually cannot be measured (i.e. sinusoidal force due to motor type excitation and 

broadband random excitation due to flow-induced vibration). Presently, operational 

modal analysis procedures are limited to the case when excitation to the system is white 

stationary noise.
34

 According to Zhang
33

, system characteristics under real loading can be 

linearized due to broadband random excitations.  

 

Operating Deflection Shapes (ODS) analysis 

ODS can be defined as any forced motion of two or more DOFs (points & directions) on 

an in-serviced machine or structure.
35

 ODS can be divided into three categories: time-



based ODS, frequency-based ODS and run-up/down ODS. Time-based ODS is extremely 

useful in giving an overall ODS, which can be planar, orbital or 3D for a non-stationary 

signal such as a transient signal compared to frequency-based ODS. It is recommended to 

perform frequency-based ODS for stationary signal such as a steady state signal under a 

constant operating conditions. 

In general, two methods of measurement are used to acquire the ODS: 

simultaneous method and measurement set method.
35

 The former method is preferred for 

a small scale test object as all channels of data can be acquired at once by using multi-

channel acquisition system and hence very time efficient. However, for a large scale test 

object, it is not able to acquire all data at a time. In this case, measurement set method is 

used. The most common measurement set method is the ODS FRF.
36

 It is formed by the 

magnitude of auto spectrum of a roving response and the phase of the cross spectrum 

between the roving response and the fixed reference response. From application point of 

view, the frequency-based ODS with ODS FRF is the most common method to be used 

for vibration monitoring of piping system in oil and gas field. Furthermore, ODS is useful 

in defining areas of structural weakness and also mechanical "looseness".
37

  

 

 

Material and methods  

Example piping system 

The piping system which was used as an example in this study was highly pressurized 

gas transporting pipeline in an offshore platform at Malaysia. The piping system was 

supported by 5 pipe supports and its total length was approximately 30m (98.425ft.). The 



pipe began from long distance transporting pipeline from other platform and it ended in a 

storage tank. The operating pressure was approximately 4.5MPa (0.653ksi) and the 

corresponding temperature of the pipeline was approximately 23°C (73.4°F). 

The material of the pipe was DSS and there was no insulation. There were two 

types of piping used, which are one with nominal outer diameter of the piping cross 

section was 609.6mm (24in.) with the nominal value of wall thickness was 17.48mm 

(0.688in.) and nominal outer diameter of the piping cross section was 406.4mm (16in.) 

with the nominal value of wall thickness of 12.70mm (0.5in.). Again, there were two 

nominal radius of curvature of pipe bends, which were 914.4mm (36in.) and 609.6mm 

(24in.), measured from the central line of the cross section of the pipe. 

 

Measurement procedure 

The need for a non-invasive testing and evaluation approach was justified by the “need to 

know” whether or not any high vibrations based primarily on the vibratory stresses 

introduced into the piping by its running conditions, i.e. the fluid pipe interaction, may 

affect the overall structural integrity of the piping system and result in a catastrophic 

failure. The fluid flow generated random excitation to the pipe and hence there was no 

issue of resonance. Many times the apparently high vibration in pipes may not cause 

excessive stresses in the piping, but could cause excessive stresses to piping system that 

were attached to the vibrating pipe.  

 

 

 



To assess the problem, measurements had been performed using 4 channels real-

time data acquisition system which consisted of sensor (i.e. a tri-axial accelerometer and 

an uni-axis accelerometer), data acquisition hardware (i.e. analog-to-digital converter), 

data acquisition and post-processing software (i.e. DASYLab and ME’scope software) 

plus other accessories (i.e. cables and magnetic base). All the measurement locations 

were taken using tri‐axial accelerometer in 3 principal directions namely X, Y and Z. 

Most of the measurement locations were linked to obtain a wire mesh model in software 

to represent the overview of DSS pipe. After inserting the measured data into database, 

this model can be used to animate and visualize the vibration movement of the piping 

system.  

Several sets of vibration measurements were performed on piping systems and 

their support structures under different operation conditions: partially-opened Flow 

Control Valves (FCVs) A & B @ 17% and fully-opened FCVs A & B with a flow rate of 

275mmscfd, 300mmscfd, 325mmscfd and 350mmscfd.  

 

Result and Discussion 

Operational Modal Analysis (ODS) & Finite Element Analysis (FEA) Correlation  

By using the behaviour of broadband random excitation due to fluid flow, OMA is used 

to measure the dynamic characteristic of the piping system. OMA result shows that the 

1st mode appears at natural frequency of 3.60Hz while the 2nd modes at 4.56Hz. The 

mode shapes are vibrating in Y-direction and X-direction for 1st and 2nd modes 

respectively. Correlation between OMA and FEA by using 1st and 2nd vibration modes 

are shown in Fig. 1. A good correlation between the results of OMA and FEA correlation 



validate the reliability of the FE model in further analysis (i.e. stress analysis). As a rule 

of thumb, percentages of errors of natural frequency less than 10% indicates a reasonable 

agreement between OMA and FEA results.
38

 Fig. 1 shows the FEA model exhibits 

3.91Hz and 4.57Hz which are vibrating at Y-direction and X-direction for 1st and 2nd 

modes respectively. Errors of 8.61% and 0.22% are obtained for the identified natural 

frequency at 1st and 2nd modes respectively. Thus, the FE model is valid and hence 

suitable to be used for stress analysis. 

 

Figure 1: Correlation between OMA and FEA by using (a) 1st and (b) 2nd Vibration 

modes 

 

Operating Deflection Shape (ODS) Analysis 

Several sets of ODS analysis are performed on the DSS pipe under different operation 

conditions. For simplify purpose, this study only shows a set of ODS analysis result for 

partially-opened FCVs A & B @ 17% with a flow rate of 275mmscfd and another set of 

ODS analysis result for fully-opened FCVs A & B with a flow rate of 300mmscfd.  Fig. 2 



shows the overlaid ODS spectrums for the DSS pipe. The Allowable Piping Vibration 

Level versus Frequency for comparison is provided for preliminary screening purpose as 

follows reference
39, 40

. It is observed that the movement are dominated by two 

frequencies which are 3.60Hz and 4.56Hz. The entire ODS spectrums are imported to FE 

environment for further dynamic stress analysis.  

 

Figure 2 Overlaid ODS Result for DSS Pipe While Operating at (a) 275mmscfd with 

partially-opened valve (b) 350mmscfd with fully-opened valve 

 

Dynamics Stress Analysis  

Displacements are obtained by ODS analysis which gives the displacement pattern of the 

total structure. Dynamics Stress are calculated using FEA based on the displacement 

values in X, Y and Z directions for 1
st
 and 2

nd
 vibration modes obtained from ODS 

analysis.  

Fig. 3(a) shows the dynamics stress results obtain from the first 2 vibration modes 

of 275mmscfd (partially-opened valve). For dynamic stress at 3.60Hz, it is observed the 



maximum stress register at 28.24MPa and located at location labelled I as shown in Fig. 

3(a). For dynamic stress at 4.56Hz, it is observed the maximum stress register at 

47.94MPa and located at location labelled II as shown in Fig. 3(a). 

Fig. 3(b) shows the dynamics stresses obtain from the first 2 vibration modes of 

350mmscfd (fully-opened valve). For dynamic stress at 3.60Hz, it is observed the 

maximum stress register at 35.58MPa and located at location labelled III as shown in Fig. 

3(b). For dynamic stress at 4.56Hz, it is observed the maximum stress register at 

78.58MPa and located at location labelled IV as shown in Fig. 3(b). 

 

Figure 3: Dynamics Stress of piping operating at 3.60Hz and 4.56Hz respectively for 

various flow rates: (a) 275mmscfd (partially-opened valve) (b) 350mmscfd (fully-opened 

valve) 

 

Table 1 shows the high stress location at the for each vibration mode. The 

summation of the stresses for mode 1 and mode 2 at the same location will give the total 



stress values. Overall, the total stress for all the locations are under the pipe stress 

allowable limit (93.8MPa) for indefinite lifecycle. 

 

Table 1: Summary of Dynamic Stress Level for various flow rates: (a) 275mmscfd 

(partially-opened valve) (b) 350mmscfd (fully-opened valve) 

Condition Location 

Stress Level  Total Stress 

(Mode 1 + 

Mode 2) 
Mode 1 (3.60Hz) Mode 2 (4.56Hz) 

275mmscfd 

(partially-

opened valve) 

I 
28.24MPa  

(Max. for Mode 1) 
13.18MPa 41.42MPa 

II 3.88MPa 
47.94MPa 

(Max. for Mode 2) 
51.82MPa 

350mmscfd 

(fully-opened 

valve) 

III 
35.58MPa 

(Max. for Mode 1) 
32.22MPa 67.80MPa 

IV 8.82MPa 
78.58MPa 

(Max. for Mode 2) 
87.40MPa 

 

 

Dynamics Stress Analysis Forecast For Maximum Operating Condition Before 

Failure 

Maximum Dynamic Stress for the partially-opened FCVs A & B @ 17% and the fully-

opened FCVs A & B with a flow rate of 275mmscfd, 300mmscfd, 325mmscfd and 

350mmscfd is plotted to forecast the maximum operating condition before failure. Peak 

performance (in terms of flow rate) for the piping system in two distinct valve opening 

cases (i.e. fully-opened and partially-opened) is forecasted, where maximum operating 

conditions are 360mmscfd and 400mmscfd for fully-opened and partially-opened FCVs 

respectively. Beyond this limit, the piping system most likely will fail. 

 



Conclusion 

A non-destructive method of failure analysis has been presented for an in-serviced DSS 

piping system due to flow-induced vibration using the combined application of OMA, 

ODS analysis and FEA. The method can be used to forecast the maximum operating 

condition for a piping system. The highest operating flow rate for the piping system are 

360mmscfd and 400mmscfd for fully-opened and partially-opened FCVs respectively. 

Beyond this limit, the piping system most likely will fail. 
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