382 research outputs found

    Effects of Fertilization on Porewater Nutrients, Greenhouse-gas Emissions and Rice Productivity in a Subtropical Paddy Field

    Get PDF
    Suitable fertilization is crucial for the sustainability of rice production and for the potential mitigation of global warming. The effects of fertilization on porewater nutrients and greenhouse-gas fluxes in cropland, however, remain poorly known. We studied the effects of no fertilization (control), standard fertilization and double fertilization on the concentrations of porewater nutrients, greenhouse-gas fluxes and emissions, and rice yield in a subtropical paddy in southeastern China. Double fertilization increased dissolved NH4+ in porewater. Mean CO2 and CH4 emissions were 13.5% and 7.4%, and 20.4% and 39.5% higher for the standard and double fertilizations, respectively, than the control. N2O depositions in soils were 61% and 101% higher for the standard and double fertilizations, respectively, than the control. The total global warming potentials (GWPs) for all emissions were 14.1% and 10.8% higher for the standard and double fertilizations, respectively than the control, with increasing contribution of CH4 with fertilization and a CO2 contribution > 85%. The total GWPs per unit yield were significantly higher for the standard and double fertilizations than the control by 7.3% and 10.9%, respectively. The two levels of fertilization did not significantly increase rice yield. Prior long-term fertilization in the paddy (about 20 years with annual doses of 95 kg N ha−1, 70 kg P2O5 ha−1 and 70 kg K2O ha−1) might have prevented these fertilizations from increasing the yield. However, fertilizations increased greenhouse-gas emissions. This situation is common in paddy fields in subtropical China, suggesting a saturation of soil nutrients and the necessity to review current fertilization management. These areas likely suffer from unnecessary nutrient leaching and excessive greenhouse-gas emissions. These results provide a scientific basis for continued research to identify an easy and optimal fertilization management solution

    Simultaneous compression of the passively mode-locked pulsewidth and pulse train

    Get PDF
    Simultaneous compression of the passively mode-locked pulse width and pulse train have been achieved by using a plano-convex unstable resonator hybrided by a nonlinear Sagnac ring interferometer. The greater than 30 mJ single pulse energy of a lone oscillator and less than or equal to 10 ps pulsewidth have been obtained. Using this system, the LAGEOS and ETALON satellites' laser ranging have been performed successfully

    An IoT-based smart mosquito trap system embedded with real-time mosquito image processing by neural networks for mosquito surveillance

    Get PDF
    An essential aspect of controlling and preventing mosquito-borne diseases is to reduce mosquitoes that carry viruses. We designed a smart mosquito trap system to reduce the density of mosquito vectors and the spread of mosquito-borne diseases. This smart trap uses computer vision technology and deep learning networks to identify features of live Aedes aegypti and Culex quinquefasciatus in real-time. A unique mechanical design based on the rotation concept is also proposed and implemented to capture specific living mosquitoes into the corresponding chambers successfully. Moreover, this system is equipped with sensors to detect environmental data, such as CO2 concentration, temperature, and humidity. We successfully demonstrated the implementation of such a tool and paired it with a reliable capture mechanism for live mosquitos without destroying important morphological features. The neural network achieved 91.57% accuracy with test set images. When the trap prototype was applied in a tent, the accuracy rate in distinguishing live Ae. aegypti was 92%, with a capture rate reaching 44%. When the prototype was placed into a BG trap to produce a smart mosquito trap, it achieved a 97% recognition rate and a 67% catch rate when placed in the tent. In a simulated living room, the recognition and capture rates were 90% and 49%, respectively. This smart trap correctly differentiated between Cx. quinquefasciatus and Ae. aegypti mosquitoes, and may also help control mosquito-borne diseases and predict their possible outbreak

    Automatic Determination of Stellar Atmospheric Parameters and Construction of Stellar Spectral Templates of the Guoshoujing Telescope (LAMOST)

    Full text link
    A number of spectroscopic surveys have been carried out or are planned to study the origin of the Milky Way. Their exploitation requires reliable automated methods and softwares to measure the fundamental parameters of the stars. Adopting the ULySS package, we have tested the effect of different resolutions and signal-to-noise ratios (SNR) on the measurement of the stellar atmospheric parameters (effective temperature Teff, surface gravity log g, and metallicity [Fe/H]). We show that ULySS is reliable to determine these parameters with medium-resolution spectra (R~2000). Then, we applied the method to measure the parameters of 771 stars selected in the commissioning database of the Guoshoujing Telescope (GSJT). The results were compared with the SDSS/SEGUE Stellar Parameter Pipeline (SSPP), and we derived precisions of 167 K, 0.34 dex, and 0.16 dex for Teff, log g and [Fe/H] respectively. Furthermore, 120 of these stars are selected to construct the primary stellar spectra template library (Version 1.0) of GSJT, and will be deployed as basic ingredients for the GSJT automated parametrization pipeline.Comment: 23 pages, 15 figures, accepted by RA

    Corticotrophin-Releasing Factor Modulates Cerebellar Purkinje Cells Simple Spike Activity in Vivo in Mice

    Get PDF
    Corticotropin-releasing factor (CRF) is a major neuromodulator that modulates cerebellar neuronal activity via CRF receptors during stress responses. In the cerebellar cortex, CRF dose-dependently increases the simple spike (SS) firing rate of Purkinje cells (PCs), while the synaptic mechanisms of this are still unclear. We here investigated the effect of CRF on the spontaneous SS activity of cerebellar PCs in urethane-anesthetized mice by in vivo electrophysiological recording and pharmacological methods. Cell-attached recordings from PCs showed that micro-application of CRF in cerebellar cortical molecular layer induced a dose-dependent increase in SS firing rate in the absence of GABAA receptor activity. The CRF-induced increase in SS firing rate was completely blocked by a nonselective CRF receptor antagonist, α-helical CRF-(9–14). Nevertheless, application of either a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM) or a selective CRF-R2 antagonist, antisauvagine-30 (200 nM) significantly attenuated, but failed to abolished the CRF-induced increase in PCs SS firing rate. In vivo whole-cell patch-clamp recordings from PCs showed that molecular layer application of CRF significantly increased the frequency, but not amplitude, of miniature postsynaptic currents (mEPSCs). The CRF-induced increase in the frequency of mEPSCs was abolished by a CRF-R2 antagonist, as well as protein kinase A (PKA) inhibitors. These results suggested that CRF acted on presynaptic CRF-R2 of cerebellar PCs resulting in an increase of glutamate release through PKA signaling pathway, which contributed to modulation of the cerebellar PCs outputs in Vivo in mice

    An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri

    Get PDF
    BACKGROUND: Biologists are becoming increasingly aware that the interaction of animals, including humans, with their coevolved bacterial partners is essential for health. This growing awareness has been a driving force for the development of models for the study of beneficial animal-bacterial interactions. In the squid-vibrio model, symbiotic Vibrio fischeri induce dramatic developmental changes in the light organ of host Euprymna scolopes over the first hours to days of their partnership. We report here the creation of a juvenile light-organ specific EST database. RESULTS: We generated eleven cDNA libraries from the light organ of E. scolopes at developmentally significant time points with and without colonization by V. fischeri. Single pass 3' sequencing efforts generated 42,564 expressed sequence tags (ESTs) of which 35,421 passed our quality criteria and were then clustered via the UIcluster program into 13,962 nonredundant sequences. The cDNA clones representing these nonredundant sequences were sequenced from the 5' end of the vector and 58% of these resulting sequences overlapped significantly with the associated 3' sequence to generate 8,067 contigs with an average sequence length of 1,065 bp. All sequences were annotated with BLASTX (E-value < -03) and Gene Ontology (GO). CONCLUSION: Both the number of ESTs generated from each library and GO categorizations are reflective of the activity state of the light organ during these early stages of symbiosis. Future analyses of the sequences identified in these libraries promise to provide valuable information not only about pathways involved in colonization and early development of the squid light organ, but also about pathways conserved in response to bacterial colonization across the animal kingdom

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Multiple Angle Observations Would Benefit Visible Band Remote Sensing Using Night Lights

    Get PDF
    The spatial and angular emission patterns of artificial and natural light emitted, scattered, and reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation during daytime. In this commentary, we use examples to show that there is additional information contained in the angular distribution of emitted light. We argue that this information could be used to improve existing remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding agencies to pursue further study of how multi‐angle views can be analyzed or acquired
    corecore