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An essential aspect of controlling and preventing mosquito-borne diseases is to
reduce mosquitoes that carry viruses. We designed a smart mosquito trap system to
reduce the density of mosquito vectors and the spread of mosquito-borne diseases.
This smart trap uses computer vision technology and deep learning networks to
identify features of live Aedes aegypti and Culex quinquefasciatus in real-time. A
unique mechanical design based on the rotation concept is also proposed and
implemented to capture specific livingmosquitoes into the corresponding chambers
successfully. Moreover, this system is equippedwith sensors to detect environmental
data, such as CO2 concentration, temperature, and humidity. We successfully
demonstrated the implementation of such a tool and paired it with a reliable
capture mechanism for live mosquitos without destroying important
morphological features. The neural network achieved 91.57% accuracy with test
set images. When the trap prototype was applied in a tent, the accuracy rate in
distinguishing live Ae. aegypti was 92%, with a capture rate reaching 44%. When the
prototype was placed into a BG trap to produce a smart mosquito trap, it achieved a
97% recognition rate and a 67% catch rate when placed in the tent. In a simulated
living room, the recognition and capture rates were 90% and 49%, respectively. This
smart trap correctly differentiated between Cx. quinquefasciatus and Ae. aegypti
mosquitoes, and may also help control mosquito-borne diseases and predict their
possible outbreak.
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Introduction

Mosquitoes have been responsible for the spread of several kinds of viruses among human
populations for a long time. Recent mosquito-borne virus outbreaks, including dengue fever,
chikungunya, and Zika virus, have affected many people (Gubler 2002; Roth et al., 2014;
Patterson et al., 2016; Mayer et al., 2017). The spread of these diseases has become more
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prevalent due to recent expansions in the geographical distributions of
mosquito species that serve as vectors. Aedes (Ae.) aegypti and Ae.
albopictus, two species of mosquitoes responsible for spreading
viruses, such as dengue and chikungunya viruses, are now widely
distributed in tropical and subtropical areas, putting approximately
half of the world’s population at risk of infection (Bhatt et al., 2013;
Kraemer et al., 2015).

Ae. aegypti and Ae. albopictus are the two species of mosquitoes
that are primarily responsible for the spread of dengue fever in Taiwan
(Lei et al., 2002). The distributions of these species differ in Taiwan.
The former species is distributed in the south of Taiwan (south of the
Tropic of Cancer, 23o35′N), whereas the latter is found throughout
the island (Chen, 2018). Ae. aegypti originated in Africa but is now
prevalent in most tropical and subtropical regions of the world
(Tabachnick, 1991). Ae. albopictus is endemic to Southeast Asia.
The distribution of this species has now expanded, with broad
coverage across the world, including Europe and Africa (Hawley
et al., 1987; Bonizzoni et al., 2013). Therefore, both species of
Aedes mosquitoes are highly likely to be alien species in Taiwan.
Studies have shown that dengue has apparently been epidemic in
Taiwan since 1872 (Koizumi, 1917). Thus, it can be inferred thatAedes
mosquitoes capable of transmitting dengue fever existed in Taiwan in
1872. Sporadic dengue outbreaks have also occurred, but outbreaks of
dengue fever have continuously been recorded since the 1980s (Lin
et al., 2010; Wang et al., 2016). To control and mitigate dengue fever
outbreaks, one must have sufficient information about the spread and
distribution of Ae. aegypti and Ae. albopictus. In other countries
affected by mosquito-related diseases, mosquito surveillance
systems are often implemented to predict and mitigate mosquito-
borne diseases. The data obtained by mosquito surveillance systems
have been shown to correlate with the number of human infections,
and such a systemmay serve as a valuable tool for evaluating the risk of
mosquito-borne virus infections (Kilpatrick and Pape, 2013). Thus, it
is vital to implement a system targeting Ae. aegypti and Ae. albopictus
to control possible future outbreaks of dengue fever.

The traditional method of mosquito surveillance is to install
several mosquito traps throughout the surveilled area to capture
live mosquitoes, which can then be transported to a laboratory for
identification and analysis (Andreadis et al., 2001). However, currently
available mosquito traps are not effective under real-world conditions
for the following reasons. First, conventionally used mosquito traps
collect all types of insects without discriminating whether the insect
can transmit disease. The laborious work of separating mosquitoes
from the mosquito traps must be done manually in the laboratory.
Second, conventional traps unable to collect environmental data, such
as temperature or humanity, when such variables have been shown to
be correlated with the potential distribution of mosquitoes (Neteler
et al., 2011). Clearly, mitigating the spread of mosquito-borne diseases
requires a multifunctional mosquito trap design.

New kinds of mosquito traps have been proposed; for example,
Microsoft has initiated a research project called Project Premonition to
develop a new robotic trap (Linn 2016a; Linn 2016b). Their new
mosquito trap design aims to collect only the mosquitoes targeted for
tracking and recording critical environmental data, such as trap
temperature, wind speed, and humidity. New technologies have
been employed to improve the performance of this mosquito
trap. An image recognition system equipped with a pre-trained
neural network enables the mosquito trap to recognize whether the
insect in the trap is the mosquito species of interest. With this cutting-

edge technology, it can be anticipated that the recognition ability of the
mosquito trap will produce great results, relieving researchers from
burdensome mosquito identification and sorting. While the future of
this project seems promising, the cost of the mosquito trap may not be
inexpensive in a wide range of regions, given its complex design and
hardware requirements.

Ae. aegypti and Ae. albopictus have similar phenotypic
characteristics, and there are black and white stripes on the bodies of
Aedes mosquitoes. Unless it is necessary to clearly distinguish between
Ae. aegypti and Ae. albopictus, the black and white stripes on the body
are sufficient for use as the basis for identifying Aedes mosquitoes. In
contrast, Culexmosquitoes do not have obvious black and white stripes,
so it is a great trait for easily discerning between these two different
mosquito species. Here, a new mosquito trap concept is proposed to
detect Aedes and non-Aedes mosquitoes via image processing using
multiple deep learning networks and a fully automatic trap system. The
aim of this mosquito trap research was to effectively collect living target
mosquitoes and obtain valuable environmental data via the trap, while
maintaining a low cost of manufacturing and implementation. The
design allows the real-time detection of mosquitoes in a single setting. It
uses a specifically trained, fully connected neural network to target the
two major species of mosquitoes responsible for the spread of dengue
fever in Taiwan, Ae. aegypti and Ae. albopictus. This mosquito trap
system can also record the CO2 concentration, humidity, and
temperature of the surrounding environment when a mosquito is
captured. These data, along with the time and location where the
mosquito is captured, are uploaded to a cloud database for real-time
observation. With this mosquito trap design, valuable functionality is
provided at a lower cost, allowing the broad implementation of a
mosquito surveillance system, that is, both effective and affordable.

Material and methods

Design of the smart mosquito trap system

The core device of the mosquito trap has two chambers (collection
boxes), one of which collects mosquitoes determined to be Ae. aegypti
orAe. albopictus and the other collects mosquitoes that are determined
to be Culex (Cx.) quinquefasciatus (Figure 1). Above these two
chambers, a circular capture plate is paired with a camera that
captures images of mosquitoes entering the bottom two chambers.
The capture plate is made of the following components: 1) the main
plate, 2) a sliding guide and an attached bottom plate, and 3) a stepper
motor.

The main plate is in the form of a cylinder on which a linear track
is etched to place the sliding guide. The main plate provides an area
(the capture area) for the mosquito to enter the trap and undergo
detection (mosquito detection is described in detail in the image
recognition system section). The main plate also rotates when
needed when a mosquito enters the trap (Figure 1 and Figure 2).
The sliding guide is placed on the main plate’s linear track, with a
bottom plate attached to the part that slides freely on the linear track.
When the sliding guide slides to its limit on one side, an area forms
between the track and the top of the bottom plate; this area is called the
capture area. Mosquitoes can fly into this area and undergo detection.
When the sliding guide slides the bottom plate to its limit on the other
side, it closes off the capture area and pushes the mosquito, if present,
from the capture area to the top of the track.
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A stepper motor is attached to the main plate through the center
of the circle. The stepper motor rotates the base plate when the
mosquito trap detects target mosquitoes that fly into the capture
area. There is a ceiling with an opening in the middle above the
capture plate. This ceiling comprises an area identical to that of the
capture plate and leaves the mosquito nowhere to go except through
the top opening. The ceiling helps prevent mosquitoes from escaping
during capture.

The core device of the mosquito trap was placed into a BG trap
(Biogents™, Regensburg, Germany). Mosquito attractants
(Guangzhou Baikong Biological Co., Ltd., China) are placed on
the BG trap cover or inside the BG trap itself to lure mosquitoes
into the mosquito trap capture area (Figure 1). The original BG trap
fan is replaced with an AC110V fan (17251A1-HBAPL-TC-N,
Sunta, Taiwan), and it is protected by a casing to prevent
foreign objects from contacting and breaking the fan blades and
entanglement of the wire from the sensors. The mosquito trap was
also equipped with a carbon dioxide sensor module (MG811,
Sandbox Electronics, Finland) to detect CO2 concentration and
other sensors to detect humidity and temperature (DHT22, Aosong
Electronics Co., Ltd., China), as shown in Supplementary Figure S1.
A Raspberry Pi microcontroller (Module B, Raspberry Pi
Foundation, England) is used to control all of the electrical
components. Once a mosquito enters the entry port and is
identified with the image recognition software, as described
below, the mosquito species is then classified according to the
phenotypic characteristics and collected in the respective chamber
(collection box) (Supplementary Figure S2).

Capture mechanism

When the mosquito trap is not actively trapping mosquitoes, the
empty rectangular track on the capture plate aligns with the ceiling
opening. The sliding guide’s base plate is at its lowest limit, forming a
space in the rectangular track between the top of the sliding guide and
the ceiling opening. This area is called the capture area. When a
mosquito is detected in the capture area, the capture plate is then
rotated by the motor controlled by the Raspberry Pi, which
immediately closes the opening, trapping the mosquito in the
capture area. When the capture plate rotates more than 90°, the
sliding guide’s base plate is lowered by gravity. When the bottom
plate starts gliding along with the sliding guide, the capture area
decreases and forces the mosquito to move in response to the capture
plate (Supplementary Figures S2A,B). Finally, the bottom plate reaches
its upper limit. There is no space left in the capture area, and thus the
mosquito is forced inside the storage chamber (Supplementary
Figure S2C).

After capturing the mosquito, the capturing plate rotates in the
opposite direction back to its original position, as confirmed by a
positioning sensor (TCST2103, Vishay Intertechnology,
United States), as shown in Figures 2D, F. The bottom plate is
then again lowered by gravity until it reaches its lowest limit.
Finally, the capture area is restored, and the trap is ready to catch
another incoming mosquito (Figure 2F). Since the capture mechanism
requires rotation of the capture plate up to 180°, the capture plate can
be controlled to rotate in different directions according to the
detection of different types of mosquitoes, thus achieving the goal

FIGURE 1
Schematic diagram of the developed mosquito trap. The large fan at the bottom of the BG trap pushes the air upward, and the three fans at the upper
entrance pull the air. The air exits through the outer edge of the 38-cm-diameter lid and enters through the center. Therefore, when mosquitoes fly near the
BG trap, they are sucked in by the trap’s airflow. The core device mechanism and operating process of the mosquito trap are described in the Materials and
Methods section. The mosquito trap includes two compartments (collection boxes): one on the left for collecting Aedes mosquitoes; and one on the
right for collecting Culex (non-Aedes) mosquitoes.”
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of effectively sorting different types of mosquitoes into different
chambers.

Image recognition system

The image recognition tool is essential for the proper functioning
of the proposed mosquito trap. The image recognition tool
determines whether a mosquito is present in the entry box and, if
so, whether it is an Ae. aegypti or Cx. quinquefasciatus mosquitoes.
The algorithm is initiated when motion is detected. To detect the
motion, the difference between images from successive timeframes is
analyzed to determine whether the movement has occurred; then,
the contours of the different images are detected, and for each
contour form, a subimage is fed into the neural network. This
whole process is implemented with OpenCV. Next, a neural
network, that is, sufficiently fast and accurate in detecting the
types of mosquitoes is developed on the Raspberry Pi device. We
developed two imaging platforms (i.e., static and living imaging
platforms) to effectively collect mosquito image data to train our
neural network and adapted the SqueezeNet model (Iandola et al.,
2016) as our neural network model, where we utilize the method of
transfer learning to train our recognition system. The deployed
algorithm incorporates OpenCV for motion detection and our
trained neural network to recognize mosquitoes in real-time using
the Raspberry Pi.

Database development

A neural network trained to differentiate between different
mosquitoes is developed to complete the image recognition process
(Figure 3). The development of the neural network consists of three
significant steps. First, an imaging system is employed to obtain
training data by imaging different mosquitoes. Such a system is
used to obtain sufficient training data by imaging different static or
live mosquito specimens. Finally, the obtained data are fed into an
appropriate neural network model for transfer learning.

Due to its success in the ImageNet competition, AlexNet has become
one of themost popular research tools since 2012.We use the SqueezeNet
neural network to develop the mosquito image recognition system. It is a
lightweight and efficient convolutional neural network (CNN)model with
50 times fewer parameters than AlexNet, but the model performance
(such as accuracy) is close to that of AlexNet. Small models have many
advantages, such as reducing the number of calculations during model
training and predictive identification. The speed of a single step is faster,
and there are fewer parameters than in a largermodel; therefore, the video
memory occupied by the network is smaller. The smaller model is
beneficial in field-programmable gate array (FPGA) and embedding
type device deployment. The proposed mosquito trap uses edge
computing to directly perform image recognition of mosquitoes with
the system embedded in the mosquito trap. No additional computer or
server is needed. Therefore, the model and calculation volume should not
be too large or compressed. The model method mainly comprises

FIGURE 2
The mosquito trap uses a rotation method to capture and classify mosquitoes. (A) Mosquitoes fly into the capture area. (B) The mechanism rotates,
blocking the opening. (C) After the mechanism rotates to a certain angle, the rotation stops, and the chassis pushes the mosquitoes into the corresponding
chamber. (D) The plate remains in the same position for a period of time. (E) The platewill then rotate in the opposite direction. (F) The plate rotates and returns
to its original position.
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network pruning, quantization, and knowledge distillation. To reduce the
amount of calculation (3 × 3 × number of input channels x number of
filters), in the CNN, 3 × 3 convolution kernels (filters) are mostly replaced
with 1 × 1 convolution kernels (filters). This concept effectively reduces
the parameters by nine times while retaining the accuracy of model
identification and then reduces the input of 3 × 3 convolution kernels. The
number of input channels dramatically reduces the number of
convolution operations. The first layer is a standard convolution base
layer (Conv) in terms of structure, with nine fire modules in the middle.
The fire module divides the original convolutional layer into two layers,
including the squeeze layer of 1 × 1 convolution filters and 1 × 1. It
comprises an expanding layer of 3 × 3 convolution filters interspersed
with max pooling layer compression parameters, retains features, and
prevents interference. After connecting a convolutional layer to control
the size of the input and output, global average pooling is used instead of
fully connected layers to reduce parameters and reduce overfitting.
According to the literature, SqueezeNet can reduce the parameters by
50 times while retaining the same accuracy as AlexNet.

Imaging of specimens

The first imaging system we developed allowed us to take pictures of
mosquitoes in two directions at different angles (Supplementary Figure S3)
and use a MATLAB-based graphical user interface (GUI) (Supplementary
Figure S3A and Supplementary Movie S1) to set parameters and perform
imaging operations. The system consisted of a platform that could be
rotated along the z-axis using a steppermotor (17hs1910-p4170, JIALIBAO
Electronics, China) and rotated 360° (Figure 3B).Mosquitoes were attached
to a platform by insect pins. A camera bracket fixed the camera and rotated
it along the x-axis (Figure 3B). However, due to platform limitations, the
rotation angle was limited to 160° (Figure 3B).

On both sides of the camera, a controllable light-emitting diode
(LED) (61-238/LK2C-B50638F6GB2/ET, Everlight Electronics Co. Ltd.,

Taiwan) was designed and placed to achieve necessary lighting
conditions. The entire system was placed in a studio with a white
background to ensure that the captured images contained only the target
mosquito. Some image samples obtained from this imaging system are
shown in Figures 3C, D. Different types of mosquito samples were
placed on the platform for photographing, and these images formed the
basis of the dataset used to train the network (Supplementary Figure S4).

Imaging of in vivo mosquitoes

In addition to obtaining fixed specimen images for neural network
training, we also developed a system to obtain live mosquito images to
improve the database used for neural network training. The setup
resembled the capture area of our mosquito trap (Figure 4A) and
included a small, 3D-printed (3030K, Kingssel, Taiwan and Delta,
FLUX, Taiwan) box, a camera (Raspberry Pi camera V2, Raspberry Pi
Foundation, United Kingdom) and an LED (61-238/LK2C-
B50638F6GB2/ET, Everlight Electronics Co., Ltd., Taiwan). The
small box, camera, and LED were affixed to a 3D printed base to
prevent shifting when moving the setup or putting live mosquitoes
into the box. One side of the box was transparent to allow the camera
to monitor the inside of the box, and the top of the box was sealed by
another transparent plate. With this design, the light from the LED
could penetrate the inside of the box. This was to eliminate shadows in
the images captured by the camera and to prevent the characteristics of
shadows from affecting neural network training.

We used a Raspberry Pi (Raspberry Pi three Model B, Raspberry Pi
Foundation, United Kingdom) to control a DC motor (DC Gearbox
Motor, TT, China) and the camera used to capture images (Figure 4A).
The captured images were stored in a secure digital (SD) memory card
in the Raspberry Pi. The Raspberry Pi and DCmotor were housed in a
3D-printed protective shell to allow attachment and protect the
circuits of the Raspberry Pi and DC motor (Figure 4B).

FIGURE 3
The CNNwas trained on capturedmosquito images and feature points through convolution. However, with increasing pixel size of the image, number of
feature pixels, and number of features found, the computational cost dramatically increases. Therefore, the poolingmethodwas used to compress the images
while retaining essential image features to increase performance. Finally, one hot encoding classification was performed to differentiate Ae. aegypti and Cx.
quinquefasciatus.
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To obtain images of moving mosquitoes, we confined live
mosquitoes to the box and used a rotating rod to disturb the entire
system at a constant rate. The rotating rod produced seven knocks on
the system for approximately 10 s, rested for 10 s, and repeated the
cycle (Figure 4B; Supplementary Figure S5A and Supplementary
Movie S2). This disturbance ensured that a mosquito would fly
continuously inside the 3D printed box, as shown in Figure 5. The
camera then captured an image similar to that captured by a mosquito
trap when a live mosquito flies over the capture area (Figure 5B,
Supplementary Movie S3). When the interference stopped, the
mosquito landed on the box wall, and the captured image reflected
the state at which the mosquito had landed after flying
(Supplementary Figures S5C,D, Supplementary Movie S4, and
Supplementary Movie S5).

We then fed the video feed into the previously mentioned motion
detection algorithm to obtain subimages. Since the subimages
sometimes included unusable images, they were manually classified
based on mosquito presence or absence. Accordingly, we were able to
quickly obtain valuable data.

Training the recognition algorithm

To identify different kinds of mosquitoes, SqueezeNet was
selected as our neural network model (Figure 3), and we further

improved it by applying the transfer learning technique based on the
mosquito datasets for both static specimens (Supplementary Figure
S4) and live mosquitoes (Figures 4C, D), including Ae. aegypti and
Cx. quinquefasciatus, that we obtained. The training, validation, and
testing set splits are listed in Supplementary Table S1 and
Supplementary Table S2. The confusion matrix of the testing set
is listed in Table 1. We also tested the core device of the mosquito
trap to identify and classify Cx. quinquefasciatus and Ae. aegypti
mosquitoes (Supplementary Figure S6 and Supplementary Movie
S6). Each test consisted of a manual feeding of 10 Cx.
quinquefasciatus and 10 Ae. aegypti mosquitoes into the detection
zone of the core device to observe how the mosquito trap behaved.
Three of the six tests test used dead mosquitoes (Table 2, test 1–3),
while the remaining three tests used live mosquitoes (Table 2,
test 4–6).

Capture efficiency of the smart mosquito trap

After confirming that the recognition result was correct, the
core device was placed in an insect cage (60 cm × 60 cm × 120 cm;
BD6S620, MegaView Science Co. Ltd., Taiwan), and the mosquito
lure was used to test live mosquito trapping efficiency. An air-
conditioning system kept the environment at a constant
temperature (27°C), and the mosquito trap and two cameras

FIGURE 4
Dynamic images were used in the validation phase during the development of the model used in this study. (A) Mechanism of the dynamic mosquito
studio. (B) Inside perspective of the dynamic mosquito camera. (C) Actual images of live females of Ae. aegypti and (D) Cx. quinquefasciatus; females were
photographed using a digital camera inside the dynamic mosquito studio based on the Arduino controller.
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(C920E, Logitech Co., Ltd., Taiwan) were placed in the center of the
insect cage, as shown in Figure 5A. The two cameras were placed on
the left and right sides of the mosquito trap (Figures 5B, C). Then,
the zipper of the insect cage was closed, and the camera
transmission line and power cord were fed through. Before
releasing the mosquitoes, the mosquito trap was activated and
the cameras were turned on. We confirmed that the recording
screen could be visualized properly and that the recorded images
could be stored on the computer’s hard disk (Figure 5A). After
turning on the recording device, 50 mosquitoes were released into

the insect cage through open cuffs, which were then closed once the
mosquitoes entered the cage. Mosquitoes were able to fly freely in
the narrow space and were caught in the mosquito trap. The camera
recorded the mosquitoes’ flight status and mosquito trap status and
classified the images as right video images (Figure 5D,
Supplementary Movie S7) and left video images (Figure 5E,
Supplementary Movie S8). After each capture, capture data were
recorded, and the capture rate and recognition rate were calculated
based on statistical data. In addition, a smart mosquito trap
integrated with a BG trap was placed in the insect cage (with an

FIGURE 5
Performance test of the core device of the developedmosquito trap to identify and classify mosquitoes. (A) The mosquito trap set up for a live mosquito
capture test. PCs and cameras are placed on the left and right sides of the mosquito trap, and the screen displays the captured image. (B,C)Mosquito trap and
two cameras in the mosquito net. (D,E) Real-time image of the mosquito trap core device from the right (Supplementary Movie S7) and left (Supplementary
Movie S8) sides of themosquito trap. The camera recorded the statuses of mosquitoes andmosquito traps in flight. After each experiment, themosquito
data were recorded, and statistical data were used to calculate the capture rate and recognition rate of the experiment.

TABLE 1 Confusion matrix. A mosquito image recognition system was developed using the SqueezeNet neural network, and transfer learning was applied using the
mosquito datasets, which were generated by fixing a mosquito specimen on an insect pin and rotating it 360° along the Z-axis, while the camera rotated along the
X-axis. LED brightness was adjusted to simulate mosquitoes under different sunlight and other light source conditions. The training database contained images of
mosquitoes of different species, sexes, and ages as well as images with different brightness levels and taken at different angles. Through the live mosquito dynamic
image capturing device, pictures of mosquitoes in flight and in other positions were taken, increasing the diversity of the training data.

Predicted class

Ae. aegypti (%) Cx. quinquefasciatus (%) Empty (%)

T
ru
e
C
la
ss

Ae. aegypti 91.57 1.43 6.99

Cx. quinquefasciatus 1.25 89.29 9.45

Empty 4.89 4.56 90.54
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air conditioning system room, Supplementary Figure S7) and the
small living room of a simulated house (3.1 m × 2.3 m × 3 m,
without furniture and air conditioning, Supplementary Figure S8)
to perform the abovementioned capture rate and recognition rate
tests.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
software (version 5.0). Use standard errors for statistical
validation when testing catch and recognition rate. We analyzed

the lure or temperature for capture and recognition rates using
Mann‒Whitney-Wilcoxon paired t tests. A p-value less than
0.05 was considered statistically significant.

Results

Mosquito capture experiment and
recognition accuracy

Supplementary Figure S6 and the associated recorded video from
the experiment (Supplementary Movie S6) show the mosquito trap

TABLE 2 Test results of the mosquito trap (mosquito trap accuracy represents the percentage of mosquitoes captured to the intended chamber decided by the
algorithm). Static mosquito images taken from various angles, at different light intensities and with different shadows were entered into the dataset, as well images of
live mosquitoes in flight and in other movement positions. These images were entered into the SqueezeNet neural network for training. Models that can recognize
mosquito species were generated. When a mosquito enters the mosquito trap area, the smart mosquito trap image recognition unit recognizes the mosquito type and
communicates with the mosquito trap structure to quickly force the mosquito into the corresponding chamber. The whole process can be completed within 0.1–0.3 s
so that mosquitoes will not escape. In this table, both live mosquitoes and dead mosquitoes were added to the mosquito capture area, and the smart mosquito trap
capture status was recorded. Each test was performed independently and repeated 3 times.

Test number State of mosquitoes Algorithm accuracy Mosquito trap accuracy

Test 1 Dead 90% (9/10) 100% (10/10)

Test 2 Dead 90% (9/10) 100% (10/10)

Test 3 Dead 70% (7/10) 100% (10/10)

Test 4 Alive 100% (10/10) 80% (8/10)

Test 5 Alive 100% (10/10) 90% (9/10)

Test 6 Alive 100% (10/10) 100% (10/10)

FIGURE 6
Data visualization and the cloud data collection platform (http://mosquitotrap.nhri.org.tw/). (A)Use themosquito trap website to query, add, edit, delete,
and manage the data of each mosquito trap. If a new mosquito trap needs to be added to the online system, click “Add” on the website. (B) For the mosquito
trap to be added, fill in the machine’s media access control (MAC) address, mosquito trap code, name, address, latitude and longitude, and area and click
submit. (C) After adding a mosquito trap, the mosquito trap website will be updated. The table on the left side and the map on the right side display the
information uploaded by the newly added mosquito trap, such as the name of the mosquito trap; the types of mosquitoes caught; the local temperature,
humidity, and CO2 concentration; and capture information such as mosquito location and GPS latitude and longitude.
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core device used to identify and classify Cx. quinquefasciatus (left
container) andAe. aegypti (right container) mosquitoes. The mosquito
is manually herded to the detection zone of the core device directly
from the top, as indicated by the red arrow in Supplementary Figure
S6A. A mosquito flying into the detection zone activates the system;
then, the capture plate rotates and drives the mosquito into the proper
storage container. For example, in this study, Cx. quinquefasciatus and
Ae. aegypti were captured in the left and right collection containers,
respectively (Figure 6). According to our experimental data,
mosquitoes constantly approached the trap during its operation,
and the trap captured the mosquitoes successfully.

Regarding the recognition accuracy, SqueezeNet was applied to 1)
train a model that can recognize mosquito types (Supplementary
Figure S3 and Supplementary Movie S1) and 2) test the function of
mosquito recognition under static and live mosquito conditions
(Supplementary Table S1 and Supplementary Table S2). Our
experimental data indicated that the real-time recognition accuracy
rates were more than 91.57% and 89.29% in the test set images
(Table 1) and live Cx. quinquefasciatus and Ae. aegypti system
(Supplementary Figures S5C,D), respectively.

Examination of the developed mosquito trap
with artificial intelligence (AI)-basedmosquito
image detection

The intermediate deep neural networks required for the procedure
introduced in the above section were developed and trained. First, the
AlexNet classifier network for the mosquito contour classification
shown in Figure 3 was trained and examined. The data reported that
the developed neural network achieved approximately 91.57%
accuracy in predicting the test set images (Table 1). Our system
performed real-time classification of live Cx. quinquefasciatus or
Ae. aegypti mosquitoes that were manually fed into the detection

zone of the core device (Supplementary Figure S6 and Supplementary
Movie S6). When integrated into a mosquito trap, our capture system
can be used to successfully distinguish Cx. quinquefasciatus
(Supplementary Figures S6A–C) and Ae. aegypti (Supplementary
Figures S6D–F) mosquitoes in vivo and sorted into the proper
chamber after identification.

To further test our mosquito trap system, we conduct the tests
shown in Table 2. In these tests, the overall accuracy of mosquito
recognition was 95 ± 7.6% (57/60), and the capture mechanism had a
success rate of 90 ± 8.2% (27/30) in the tests with live mosquitoes. The
capture and identification tests involving the core device of the
prototype trap used real-time capture and classification video data
to determine the effectiveness of the mosquito trap. The camera fully
recorded the statuses of the mosquitoes and mosquito traps.
Approximately ten experiments revealed that the accuracy of
mosquito classification was more than 92 ± 3.4%. Although the
capture rate was not very good, it was still nearly 44 ± 9.6%
(Figure 5; Table 3). We also found that the number of lures
seemed to have a slight effect on the average catch number, but the
difference was not statistically significant (3 vs. 1 lure, 48% vs. 39%, p =
2.79, Mann-Whitney test).

Efficacy of the modified BG trap integrated
with the smart mosquito trap

Based on the good catch rate of the BG trap (Johnson et al., 2012;
Barrera et al., 2013; Li et al., 2016), we integrated the core device of the
mosquito trap into a commercial BG trap to form a new type of smart
mosquito trap and then conducted tests related to mosquito trapping
(Supplementary Figure S7). In a laboratory where the temperature was
controlled at 27°C ± 1°C, the newly integrated smart mosquito trap was
placed in a small insect cage for testing. The results showed that the
average catch rate and recognition rate increased by 67 ± 25.0% and

TABLE 3 Performance test results of the core device of themosquito trap in the insect cage. The test setup is shown in Figure 5. Fifty Ae. aegyptimosquitoes were placed
into the insect cage. Themosquitoes were allowed to fly freely in the limited space and were captured and identified by the mosquito trap. The size of the tested insect
cage was 60 cm × 60 cm × 120 cm, and the test environment temperature was maintained at 27°C ± 1°C by an air conditioning system. Each test was performed
independently and repeated 10 times.

Experiment
number

Time Capture
rate (%)

Recognition
rate (%)

Number
of Ae.
aegypti
released

Number
of

captures

Recognition
times

Recognition
of Ae.
aegypti

Recognition
of Cx.

quinquefasciatus

Number
of lures

Experiment 1 15:49–10:00 42 87 50 21 39 34 5 3

Experiment 2 15:30–09:30 42 86 50 21 37 32 5 3

Experiment 3 15:30–11:30 66 93 50 33 44 41 3 3

Experiment 4 15:30–12:05 54 97 50 27 34 33 1 3

Experiment 5 16:20–13:00 38 94 50 19 32 30 2 3

Experiment 6 15:30–11:30 46 97 50 23 29 28 1 1

Experiment 7 15:30–11:30 32 92 50 16 24 22 2 1

Experiment 8 15:30–11:30 42 92 50 21 38 35 3 1

Experiment 9 15:30–11:50 42 91 50 21 35 32 3 1

Experiment 10 15:30–11:30 32 91 50 16 32 29 3 1
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97 ± 2.9%, respectively (Table 4). Afterward, we expanded the space in
which the mosquitoes could fly by 50-fold by placing the trap in a
simulated living room without air conditioning (fluctuations of
27–33°C) and conducted additional mosquito trap tests
(Supplementary Figure S8). Similar results were obtained, with an
average capture rate of 49 ± 17.7%; the recognition rate reached 90 ±
8.3% (Supplementary Table S3).

Data visualization and the cloud data
collection platform

The user connects to the project website (Figure 6), and all the data
are transmitted to the user on the backend, including the area where
the mosquitoes are caught (Figures 6A, C), the mosquito trap number,
address, GPS coordinates (Figure 6B), date and time, type of mosquito
vector, temperature, humidity, etc. The user accesses the data via a
client web page; weather data are constantly pulled from the Central
Weather Bureau (CWB) via an open application programming
interface (API) connection.

Discussion

To the best of our knowledge, this is the first study that used a CNN
to extract features from images of adult mosquitoes to identify Cx.
quinquefasciatus and Ae. aegyptimosquitoes and capture them safely in
real time. The CNNwas able to distinguish betweenCx. quinquefasciatus
and Ae. aegypti test set images, with an accuracy rate of 92%. The smart
trap also uses AI algorithms to identify whether the insect entering the
trap is a vector mosquito of interest. The trap has the advantage of
operating with low power consumption and is made using inexpensive
3D printing, making it a relatively inexpensive tool for mosquito control.
The trap design is suitable for high-throughput manufacturing and
utilizes commercially available mosquito attractants.

Traditional ventilation mosquito traps have the disadvantages of
high-power consumption and a low capture rate. Therefore, in this
study, we proposed a new method for catching live mosquitoes
(Figure 2; Supplementary Figure S2). When the mosquito trap is
inactive, the slide rail of the catch block is aligned with the opening of
the cover. The chassis on the slide rail forms a space between the

lowest point and the cover hole on the slide rail, forming the capture
area. When a mosquito enters this space, the motor of the capture
block activates to rotate the capture block. This action immediately
closes the opening and the gap, pushing the mosquito into the capture
space. When the capture block rotates 90°, the chassis on the slide rail
compresses the space due to gravity and forces the mosquito to exit the
capture block. The chassis will eventually reach the top of the slide rail.
At this time, the capture space is completely compressed, forcing the
mosquito into the collection box. After the collection is complete, the
capture block will rotate in the opposite direction back to its original
position, and the chassis on the slide rail will return to the bottom due
to gravity, opening up the capture space to catch the next mosquito.
With the proposed rotation method, the mosquito trap can effectively
capture target mosquitoes. The design of the mechanism can
effectively force the captured mosquitoes into the storage area
(Supplementary Figure S6). Our experimental data indicate that the
trap design is feasible and will not harm mosquitoes (Table 2). We
achieved a 90% capture rate in a laboratory setting.

The collection of mosquito specimens is an essential part of neural
network training. Therefore, it is necessary to design an ideal imaging
system to photograph static mosquito specimens (Supplementary
Figure S3 and Supplementary Figure S4). The training results from
SqueezeNet can be applied to only static mosquito specimens, and it
might not be feasible to classify live mosquitoes. Accordingly, a different
camera system was designed to specifically target live mosquitoes
(Figures 4A,B). The images of live mosquitoes are closer to reality
than those of static mosquitoes, as live mosquitoes fly and move, unlike
static mosquito specimens (Figures 4C, D). However, mosquitoes do not
change their posture often, so an interference system was also designed.
To obtain images of movingmosquitoes, we confined live mosquitoes to
a box and used a rotating rod to disturb the entire system at a constant
rate. The rotating rod produced seven knocks on the system for
approximately 10 s, rested for 10 s, and then repeated the cycle
(Figures 4A, B). The best and most convenient motor tapping
system design was obtained (Supplementary Figures S5A,B), and
based on this, many images of living mosquitoes in different flight
positions were taken (Supplementary Figures S5C,D). The developed
mosquito trap has an excellent recognition effect due to not only the use
of the SqueezeNet neural network for training but also the content of the
database; for example, we used both static and live mosquito images for
training for the first time.

TABLE 4 Experimental results of the BG trap integrated with the developed mosquito trap core device in an insect cage. The test setup is shown in Supplementary
Figure S7. Fifty Ae. aegyptimosquitoes were placed into the insect cage, which was 60 cm × 60 cm x 120 cm, for capture and identification by the mosquito trap. The
test environment temperature was maintained at 27°C ± 1°C by an air conditioning system. Each test was performed independently and repeated 6 times.

Experiment
number

Time Capture
rate (%)

Recognition
rate (%)

Number
of Ae.
aegypti
released

Number
of

captures

Recognition
times

Recognition
of Ae.
aegypti

Recognition of
Cx.

quinquefasciatus

Number
of lures

Experiment 1 16:10–11:30 64 100 50 32 38 38 0 1

Experiment 2 14:20–11:00 80 100 50 40 46 46 0 2

Experiment 3 15:30–11:00 86 100 50 43 50 50 0 2

Experiment 4 14:20–11:00 96 94 50 48 47 44 3 2

Experiment 5 15:00–11:00 54 97 50 27 38 37 1 2

Experiment 6 15:00–11:00 20 93 50 10 15 14 1 2
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The test results were similar to what we expected and suggested that
building a smart mosquito trap using our design is practical. The system,
however, calls for some improvements that could be made in the future.
First, the neural network’s accuracy could certainly be further improved;
additionally, we trained the network on only two different types of
mosquitoes, namely, Cx. quinquefasciatus andAe. aegypti. In real-world
settings, one would anticipate that other types of insects would enter the
capture area at some point. We thus need to obtain a more
comprehensive dataset on all possible insects that may enter the
capture area and train our neural network to recognize these insects
so that our mosquito trap can capture only the target species, namely,
Ae. aegypti mosquitoes. Second, our capture plate successfully forced
live mosquitoes into the intended chamber approximately 90% of the
time. In the failed cases, we found that themosquitoes got stuck between
the capture plate and the ceiling or were forced into the incorrect
chamber by rotation of the capture plate. Future modification of the
mosquito trap should address this problem to make the capture process
more effective. The next step in our mosquito trap research is to deploy
the trap in a more general experimental setting to elucidate effective
ways to capture mosquitoes in the wild.

In addition, the BG trap is currently considered the “gold
standard” for urban Aedes mosquito capture (Johnson et al., 2018).
Even so, a BG trap lacks a real-time capture and classification video
function to detect the types of mosquitoes caught by the mosquito
trap. The smart mosquito trap we developed has been modified to
include this important function. The smart mosquito trap can
automatically distinguish between Aedes and non-Aedes
mosquitoes when they enter the trap, count them, and wirelessly
transmit the results to the cloud server in real time. Vector control
professionals can establish the data density and accuracy of
monitoring procedures for vector mosquitoes to understand the
adult density index and population dynamics. Although a second-
generation BG-Counter two trap has been developed and sold
recently, its price may still be higher than that of our smart
mosquito trap. The smart mosquito trap we have developed can
provide valuable functions at a low cost so that effective and
affordable mosquito surveillance systems can be widely implemented.

Commercially available traps usually combine a specific sense of
smell and vision to attract mosquitoes. These lures are usually used
in combination and often play an important role. In our
experiments, although the trapping rate reached nearly 50%
(Table 3 and Table 4), if the capture rate could be increased, the
control of vector mosquitoes could be improved. Adjusting the lures
could be a method to increase the catch rate of the trap. In addition to
CO2 and chemistry (simulating the body similar to the function of
attracting mosquitoes), providing additional stimuli, such as light or
sound, may improve the capture efficiency. For several mosquitoes,
low-wavelength light (green to blue) is very attractive (Burkett et al.,
1998; Mwanga et al., 2019). Increasing the light intensity will also
affect the attractiveness to mosquitoes. Sound is also a way to lure
mosquitoes. Recent studies have indicated that using 450- or 500-Hz
sound as a bait can catch mosquitoes (Staunton et al., 2021).
Therefore, applying different forms of lures to the trap will
greatly improve the efficiency of the developed smart mosquito
trap for catching mosquitoes.

Recent studies have shown that climate influences the capture rate
of mosquito traps, which in turn affects the efficiency of traps
(Crepeau et al., 2013). Taiwan has a subtropical climate, and the
most common area for dengue fever in Taiwan is the south. The

temperature mostly remains above 30°C, which is suitable for
mosquito breeding. Therefore, we used 30°C as the ambient
temperature cutoff to detect whether temperature had an impact
on the mosquito trap efficacy. Ambient temperature had no effect
on the capture rate (p = 0.64, Mann-Whitney test) or identification
rate (p = 0.39, Mann-Whitney test) of the mosquito trap
(Supplementary Table S3). We also found that the mosquitoes
caught were still alive and that their external morphological
characteristics were not obviously destroyed. Therefore,
identification ability was improved; moreover, live mosquitoes are
beneficial in analyzing whether they harbor dengue virus or other
viruses. Taken together, the modified BG trap integrated with the
developed smart mosquito trap had good effects in capturing and
identifying mosquitoes, which will help control mosquito vectors.

Currently, all commercially available mosquito traps lack effective
environmental parameter detection mechanisms, big data cloud
platform connections, and mosquito identification and capture
mechanisms (Schatz et al., 2010). Therefore, various environmental
sensors, such as CO2, temperature, and humidity sensors, are
integrated into the new smart mosquito trap. The traps also
connect to one another via the Internet of Things (IoT) (Liao
et al., 2019); the traps collect and record environmental data in
high-risk areas, and IoT technology and big data cloud analysis can
be used to predict the next area at high risk of dengue fever. This allows
the implementation of environmental epidemic prevention and
control strategies as soon as possible. However, the related vector
mosquito identification system should be improved; deep learning
technology should be used in the development of image identification
systems to track dynamic ranges (Kim et al., 2019), species, and
distribution densities of vector mosquitoes to identify potential
epidemic areas at high risk. The prevention of mosquito-borne
diseases should be carried out in one step.

The environmental data detected by the new mosquito trap in
this study have been uploaded to an open data platform (Figure 6)
(http://mosquitotrap.nhri.org.tw/), not only for data visualization
but also to allow developers to develop other applications to extend
the results of this study. The collected data can also be used as a key
dataset for deep learning algorithms for the prediction of mosquito
epidemic situations in the future. Integrating additional information,
such as ultraviolet ray intensity and rain probability, will allow
people to monitor their environment and the status of vector
mosquito-borne diseases at any time from any location, similar to
weather forecasts. The collected data will also allow further academic
research. With contributions from makers and the use of folk
technologies, this type of intelligent mosquito trap can be utilized
worldwide in locations such as schools, public places, and even
private residences, increasing popularization and improving the
control of future epidemics.

Conclusion

In summary, we developed a smart mosquito trap system that
correctly differentiated between Cx. quinquefasciatus and Ae. aegypti
mosquitoes and captured them in different chambers with an
accuracy of approximately 92%. The core prototype achieved a
capture rate of up to 90% under laboratory testing conditions. In
combination with a BG trap, the recognition rate and capture rate
were 90% and 49%, respectively, when tested in a simulated living
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room setting. These results, along with the humidity, temperature,
and CO2 concentration, can be instantly updated to the cloud when a
mosquito is captured. This smart mosquito trap can help control
mosquito-borne diseases and predict their possible outbreaks. We
expect that this system could be used in indoor urban areas and at
rainfall collection facilities in tropical regions in developing
countries. We have proven that such a mosquito trap is
practicable by improving the real-time recognition algorithm and
mechanical design. The deployment of this type of mosquito trap in a
real-world setting to help prevent mosquito-borne diseases is within
sight. We hope that in the future, the model can be embedded in a
mobile application (app) to allow for community participation and
thereby facilitate efforts to control vector-borne diseases. Indeed,
this model can improve vector control operations through fast and
reliable identification of target species and provide insights into their
biology and ecology.
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SUPPLEMENTARY TABLE S1
The number of images for each type of mosquito used in the training set.

SUPPLEMENTARY TABLE S2
The number of images used in the validation set and the testing set.

SUPPLEMENTARY TABLE S3
Experimental results of the integration of the BG trap and the developed core
device of the mosquito trap in a small, simulated living room. The test setup is
shown in Figure S8. Fifty Ae. aegyptimosquitoes were released into the living
room, which was 3.1 m x 2.3 m x 3 m, for capture and identification by the
mosquito trap. Themosquito trap contained 2 lures. The ambient temperature
ranged from 28°C to 32°C during the period of trapping. Each test was
performed independently and repeated 29 times.

SUPPLEMENTARY FIGURE S1
Hardware operation and signal transmission. The model trained by the neural
network is loaded into the Raspberry Pi to recognize types of mosquitoes. The
image captured by the camera is transmitted back to the Raspberry Pi for file
processing, and the temperature, humidity, and CO2 concentration are
recorded. The Raspberry Pi then prompts the capturemechanism to rotate the
motor for capture and returns the turntable to its original position with a
photodetector. Then, the data are uploaded to the cloud database for statistical
analysis, and the captured mosquito can be viewed on a browser.

SUPPLEMENTARY FIGURE S2
Capture mechanics of the proposed mosquito trap. First, the capture area is
opened for mosquitoes to enter. When a mosquito is detected, the capture
area rotates, immediately blocking the path to the exit. When the plate turns
90o, the impact board is then lowered by gravity, forcing the mosquito into the
storage chamber. After the mosquito has entered in the storage area, the
capture mechanism returns to its original state. When turning, the impact
board stays at the bottom, preventing themosquito from escaping. Gravity then
pulls the impact board back down, and the mosquito trap returns to its normal
state.

SUPPLEMENTARY FIGURE S3
Mosquito image collection and database establishment. (A) The MATLAB GUI
interface for the static mosquito shooting device (Movie S1). (B) The design of
the mosquito image collection device. (C) The camera rotates vertically to
take pictures of mosquitoes. (D) When shooting mosquitoes, the camera is
rotated on a horizontal plane.

SUPPLEMENTARY FIGURE S4
Static mosquito images at different viewing angles from our image collection
system. First, we fixed the mosquito onto an insect pin and rotated it
360 degrees along the Z-axis. Simultaneously, the camera rotated along the
X-axis and adjusted the brightness with an LED to simulate images of
mosquitoes under different sunlight and light source conditions. The training
database contained mosquitoes of different types, sexes, and ages, as well as
images taken under different light conditions and at different angles.

SUPPLEMENTARY FIGURE S5
Overview of the dynamic mosquito studio and its operation, including the
dynamic studio’s internal perspective for mosquitoes. (A) The operation of the
camera when a live mosquito is photographed (Movie S2). (B) A mosquito in
the shooting box when the live mosquito camera was recording (Movie S3). (C)
Recognition of Cx. quinquefasciatus after imaging and training by the neural
network (Movie S4). (D) Recognition of Ae. aegypti after imaging and training
by the neural network (Movie S5).

SUPPLEMENTARY FIGURE S6
Mosquito trap’s core device identifies and classifies Cx. quinquefasciatus and
Ae. aegypti (Movie S6). (A) A mosquito (Cx. quinquefasciatus) is manually fed
into the trap from the top. (B) The capture plate rotates and pushes the
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mosquito into the storage chamber. (C) The mosquito is now trapped in the
storage chamber. (D) A mosquito (Ae. aegypti) is manually fed into the trap
from the top. (E) The capture plate rotates and pushes the mosquito into the
storage chamber. (F) The mosquito is now trapped in the storage chamber.

SUPPLEMENTARY FIGURE S7
Performance test of the developed smart mosquito trap integrated into the
commercial BG trap. (A) Combined BG trap and mosquito trap mechanism
and airflow diagram. (B)Capture test involving the BG trap combined with the
mosquito trap in an insect cage. The power cables were fed through the seal of
the zipper. After the insect cage zipper was closed, the two 18-cm cuff
openings were kept open for mosquitoes to enter. Before placing the
mosquitoes in the cage, the mosquito trap as activated. After turning on the
trap, 50 mosquitoes were put into the insect cage through the open sleeve.
After placing the mosquitoes in the cage, the sleeves were closed tightly,
trapping themosquitoes in the insect cage. Themosquitoes were allowed to fly
freely in the limited space and were caught by the mosquito traps in each
experiment.

SUPPLEMENTARY FIGURE S8
Performance tests of smart mosquito traps integrated into BG traps in a small,
simulated living room. (A) The room layout and location where the combined
BG trap and smart mosquito trap was placed for capture testing. (B,C) Actual
photos of the room and the actual placement of the BG trap. No furniture or air
conditioning was placed in the room to allow maximum space for the
mosquitoes; the window remained closed. After the mosquito trap was
activated, 50 mosquitoes were released into the room. The mosquitoes were
allowed to fly freely in the room, and the trap captured the mosquitoes. After
releasing the mosquitoes into the room, the sleeves of the insect cage were

closed. Themosquitoes were allowed to fly freely in the limited space and were
caught by the trap in each experiment.

SUPPLEMENTARY MOVIE S1
The establishment of the mosquito image database.

SUPPLEMENTARY MOVIE S2
Dynamic mosquito image collection mechanism.

SUPPLEMENTARY MOVIE S3
The dynamic mosquito studio inside perspective view.

SUPPLEMENTARY MOVIE S4
Shoot and recognize the Cx. quinquefasciatus in the dynamic mosquito
studio.

SUPPLEMENTARY MOVIE S5
Shoot and recognize the Ae. aegypti in the dynamic mosquito studio.

SUPPLEMENTARY MOVIE S6
The core device of the trap to identify and classify the mosquitoes.

SUPPLEMENTARY MOVIE S7
The camera recorded the mosquitoes’ flight status and mosquito trap status
and classified the images as right video images.

SUPPLEMENTARY MOVIE S8
The camera recorded the mosquitoes’ flight status and mosquito trap status
and classified the images as left video images.
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